

Datasheet

Tianma

NL10276AC30-48D

15.0" TFT Display

NL-€F-0€Ï

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

TFT COLOR LCD MODULE

NL10276AC30-48D

38cm (15.0 Type) XGA LVDS interface (1port)

> DATA SHEET DOD-PP-2849 (2nd edition)

This DATA SHEET is updated document from DOD-PP-2541(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

1

☆

INTRODUCTION

The Copyright to this document belongs to Tianma Japan, Ltd. (hereinafter called "TMJ"). No part of this document will be used, reproduced or copied without prior written consent of TMJ.

TMJ does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of TMJ.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by TMJ, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an TMJ sales representative in advance.

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality.

Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS.	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 LED driver	
4.3.3 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.4.1 LCD panel signal processing board	
4.4.2 LED driver	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.5.1 LCD panel signal processing board	
4.5.2 LED driver	
4.5.3 Positions of socket	
4.5.4 Connection between receiver and transmitter for LVDS	
4.5.5 Input data mapping	
4.6 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.6.1 Combinations of input data signals and FRC signal	
4.6.2 16,194,277 colors	
4.6.3 262,144 colors	
4.7 DISPLAY POSITIONS	
4.8 SCANNING DIRECTIONS	
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Outline of input signal timings	
4.9.2 Timing characteristics	
4.9.3 Input signal timing chart	
4.10 OPTICS	
4.10.1 Optical characteristics	
4.10.2 Definition of contrast ratio	
4.10.3 Definition of luminance uniformity	
4.10.4 Definition of response times	
4.10.5 Definition of viewing angles	
5. ESTIMATED LUMINANCE LIFETIME 6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW.	
8.2 REAR VIEW	

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL10276AC30-48D is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

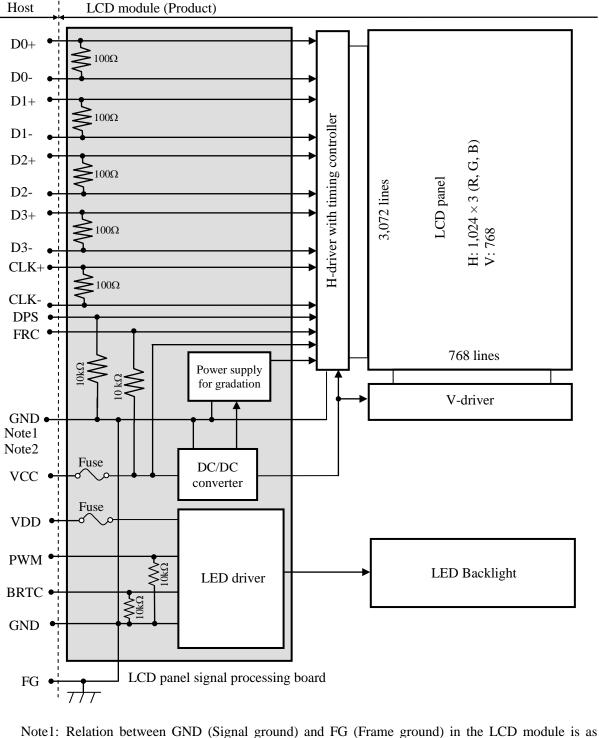
Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• For industrial use

1.3 FEATURES


- Ultra-wide viewing angle (Super Fine TFT (SFT))
- High contrast
- Wide color gamut
- LVDS interface
- Selectable 8-bit or 6-bit digital signals for data of RGB
- LED backlight built in LED driver
- Replaceable lamp for backlight
- Acquisition product for UL60950-1/CSA C22.2 No.60950-1-03 (File number: E170632)
- Compliant with the European RoHS directive (2011/65/EU)

2. GENERAL SPECIFICATIONS

Display area	304.128 (H) × 228.096 (V) mm
Diagonal size of display	38cm (15.0 inches)
Drive system	a-Si TFT active matrix
Display color	16,194,277 colors (At 8-bit input, FRC terminal= Low) 262,144 colors (At 6-bit input, FRC terminal= High or Open)
Pixel	1,024 (H) × 768 (V) pixels
Pixel arrangement	BGR (Blue dot, Green dot, Red dot) vertical stripe
Dot pitch	$0.099 (H) \times 0.297 (V) mm$
Pixel pitch	$0.297 (H) \times 0.297 (V) mm$
Module size	326.5 (W) × 253.5 (H) × 11.8 (D) mm (typ.)
Weight	870g (typ.)
Contrast ratio	900:1 (typ.)
Viewing angle	 At the contrast ratio ≥10:1 Horizontal: Right side 88° (typ.), Left side 88° (typ.) Vertical: Up side 88° (typ.), Down side 88° (typ.)
Designed viewing direction	Viewing angle with optimum grayscale ($\gamma = 2.2$): Normal axis (perpendicular)
Polarizer surface	Antiglare
Polarizer pencil-hardness	3H (min.) [by JIS K5600]
Color gamut	At LCD panel center 72% (typ.) [against NTSC color space]
Response time	$\begin{array}{l} Ton+Toff (10\% \leftrightarrow 90\%) \\ 25 \text{ms (typ.)} \end{array}$
Luminance	At the maximum luminance control 350cd/m ² (typ.)
Signal system	LVDS interface (1port)
Power supply voltage	LCD panel signal processing board: 3.3V LED driver: 12.0V
Backlight	LED backlight built in LED driver Replaceable part • Lamp holder set: 150LHS205
Power consumption	At the maximum luminance control, Checkered flag pattern 9.5W (typ.)

NL10276AC30-48D

3. BLOCK DIAGRAM

Note1: Relation between GND (Signal ground) and FG (Frame ground) in the LCD module is as follows.

	GND- FG	Connected	
<u>_</u> .	CND and EC must be composed to an	stomen equipment's enound and it is a	

Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds to be connected together in customer equipment.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	326.5 ± 0.5 (W) × 253.5 ± 0.5 (H) × 11.8 ± 0.5 (D)	Note1	mm
Display area	304.128 (H) × 228.096 (V)	Note1	mm
Weight	870(typ.), 920(max.)		g

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter		Symbol	Rating	Unit	Remarks			
Power supply	LCD panel signal	processing board	VCC	-0.3 to +3.96	v				
voltage	LED d	river	VDD	-0.3 to +15.0	v				
	LCD panel signal	Display signals Note1	VD	-0.5 to VCC+0.3	v	Ta= 25°C			
Input voltage	processing board	Function signals Note2	VF	-0.5 to VCC+0.3	v	1a= 25 C			
for signals			PWM	-0.3 to +5.5	V				
	LED d	river	BRTC	-0.3 to +5.5	V				
	Storage temperature	Tst	-30 to +80	°C	-				
Onenstin	a tamparatura	Front surface	TopF	-20 to +70 °C		Note3			
Operating	g temperature	Rear surface	TopR	-20 to +70	°C	Note4			
				≤ 95	%	$Ta \le 40^{\circ}C$			
	Relative humidity		RH	≤ 85	%	$40^{\circ}C < Ta \le 50^{\circ}C$			
	Note5		КП	≤ 55	%	$50^{\circ}C < Ta \le 60^{\circ}C$			
				≤ 36	%	$60^{\circ}C < Ta \le 70^{\circ}C$			
	Absolute humidity Note5		AH	≤70 Note6	g/m ³	Ta > 70°C			

Note1: D0+/-, D1+/-, D2+/-, D3+/-, CLK+/-

Note2: DPS, FRC

Note3: Measured at LCD panel surface (including self-heat)

Note4: Measured at LCD module's rear shield surface (including self-heat)

Note5: No condensation

Note6: Water amount at $Ta = 70^{\circ}C$ and RH = 36%

NL10276AC30-48D

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

5.1 LeD parter signal process	, <u>8</u> 000					(Ta	$a=25^{\circ}C$, Note1)
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VCC	3.0	3.3	3.6	V	-
Power supply current		ICC	-	320 Note2	680 Note3	mA	at VCC= 3.3V
Permissible ripple voltage	VRP	-	-	300	mVp-p	for VCC Note4, Note5, Note6	
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.25V
voltage	Low	VTL	-100	-	-	mV	Note7
Terminating resistance		RT	-	100	-	Ω	-
	High	VFH1	0.7VCC	-	VCC	V	
Input voltage for DPS signal	Low	VFL1	0	-	0.3VCC	V	-
	High	VFH2	0.7VCC	-	VCC	V	
Input voltage for FRC signal	Low	VFL2	0	-	0.3VCC	V	-
	High	IFH1	-	-	500	μΑ	
Input current for DPS signal	Low	IFL1	-500	-	-	μΑ	-
Input automatic for EDC signal	High	IFH2	-	-	500	μΑ	
Input current for FRC signal	Low	IFL2	-500	-	-	μΑ	-

Note1: When designing of the power supply, take the measures for the prevention of surge voltage.

Note2: Checkered flag pattern [by IEC 61747-6]

Note3: Pattern for maximum current

Note4: This product works even if the ripple voltage levels are over the permissible values, but there might be noise on the display image.

Note5: The permissible ripple voltage includes spike noise.

Note6: The load variation influence does not include.

Note7: Common mode voltage for LVDS receiver

☆

 $(T_{0}, 250C)$

4.3.2 LED driver

							$(Ta = 25^{\circ}C)$		
Parameter		Symbol	Symbol min. typ. max. Unit				Remarks		
Power supply voltage	e	VDD	10.8	12.0	13.2	V	Note1		
Power supply current		IDD	-	700	960 Note2	mA	At the maximum luminance control		
Permissible ripple vo	ltage	VRPD	-	-	200	mVp-p	for VDD Note3, Note4, Note5		
Input voltage for	High	VDFH1	1.2	-	5.3	V			
PWM signal	Low	VDFL1	0	-	0.35	V			
Input voltage for	High	VDFH2	1.5	-	5.3	V			
BRTC signal	Low	VDFL2	0	-	0.8	V	Note6		
Input current for	High	IDFH1	-	-	800	μΑ	INOLEO		
PWM signal	Low	IDFL1	-800	-	-	μΑ			
Input current for	High	IDFH2	-	-	800	μΑ			
BRTC signal	Low	IDFL2	-800	-	-	μΑ			
PWM frequency		f _{PWM}	200	-	20k	Hz	Note7, Note9		
PWM duty ratio		DR _{PWM}	1	-	100	%	Note8, Note10, Note11		
PWM pulse width		tPWH	5	-	-	μs	Note10, Note11		

Note1: When designing of the power supply, take the measures for the prevention of surge voltage.

Note2: This value excludes peak current such as overshoot current.

Note3: The power supply lines (VDD and GND) may have ripple voltage during luminance control of LED. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on.

- Note4: The permissible ripple voltage includes spike noise.
- Note5: This product works even if the ripple voltage levels are over the permissible values, but there might be noise on the display image.

Note6: See "3. BLOCK DIAGRAM".

Note7: A recommended f_{PWM} value is as follows.

$$f_{PWM} = \frac{2n-1}{4} \times fv$$

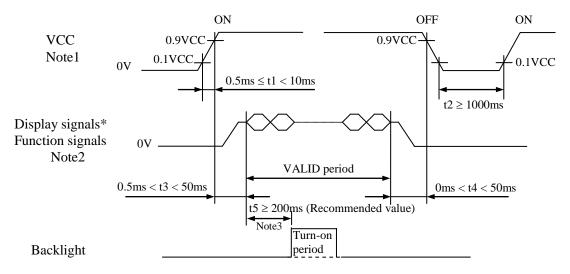
(n = integer, fv = frame frequency of LCD module)

Note8:

$$DR_{PWM} = \frac{tPWH}{tPW}$$

tPWH: PWM pulse width, tPW: PWM dimming cycle (= 1/f_{PWM})

- Note9: Depending on the frequency used, some noise may appear on the screen, please conduct a thorough evaluation.
- Note10:While the BRTC signal is high, do not set the tPWH (PWM pulse width) is less than minimum value. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by BRTC signal.
- Note11:Regardless of the PWM frequency, both PWM duty ratio and PWM pulse width must be always more than the minimum values.

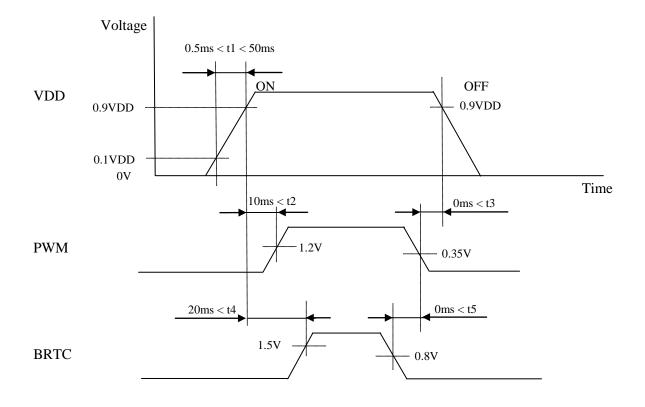

4.3.3 Fuse

Dogometer		Fuse	Dating	Eusing autom	Remarks		
Parameter	Туре	Supplier	Rating	Fusing current	Kemarks		
VCC FCC16152AE		KAMAYA ELECTRIC	1.5A	3.0A			
vee	FCC10152AD	Co., Ltd.	36V	5.0A	Note1		
VDD FCC16202AB		KAMAYA ELECTRIC	2.0A	4.0A	Note1		
VDD	FCC10202AD	Co., Ltd.	36V	4.0A			

Note1: The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board



* These signals should be measured at the terminal of 100Ω resistance.

- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 3.0V, there is a possibility that a product does not work due to a protection circuit.
- Note2: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CLK+/-) and function signals (DPS and FRC) must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.
 If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the
- display and function signals, VCC also must be shut down. Note3: In order to avoid unstable data display, the backlight is recommended to turn on within the VALID period of display and function signals.

Recommended value: $t5 \ge 200 \text{ms}$

4.4.2 LED driver

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): 185083-20121 (P-TWO ELECTRIC TECHNOLOGY CO., LTD.) Adaptable plug: DF14-20S-1.25C (Hirose Electric Co., Ltd. (HRS))

Adaptab. Pin No.	Symbol	Signal	Input data signal: 8-bit	Input data signal: 6-bit	Remarks				
1	VCC			1					
2	VCC	Power supply	Power	supply	Note1				
Z	VCC								
3	GND	Ground		ound	Note1				
4	DPS	Selection of scan direction	0	everse scan ormal scan	Note2				
5	D0-	Pixel data	RO R	5, G0	Note3				
6	D0+	i ixei uata							
7	GND	Ground	Gro	Note1					
8	D1-	Divol data	01.05						
9	D1+	Pixel data	G1-G5,	Note3					
10	GND	Ground	Gro	ound	Note1				
11	D2-				Note3				
12	D2+	Pixel data	В2-В	B2-B5, DE					
13	GND	Ground	Gro	ound	Note1				
14	CLK-								
15	CLK+	Pixel clock	Pixel	clock	Note3				
16	GND	Ground	Gro	und	Note1				
17	D3- / GND	Pixel data	R6-R7						
18	D3+ / GND	/ Ground	G6-G7 B6-B7	Ground	Note3				
19	N. C.	Non connection		-	Keep this pin Open				
20	FRC	Selection of the number of colors	Low	Note4 Note5					

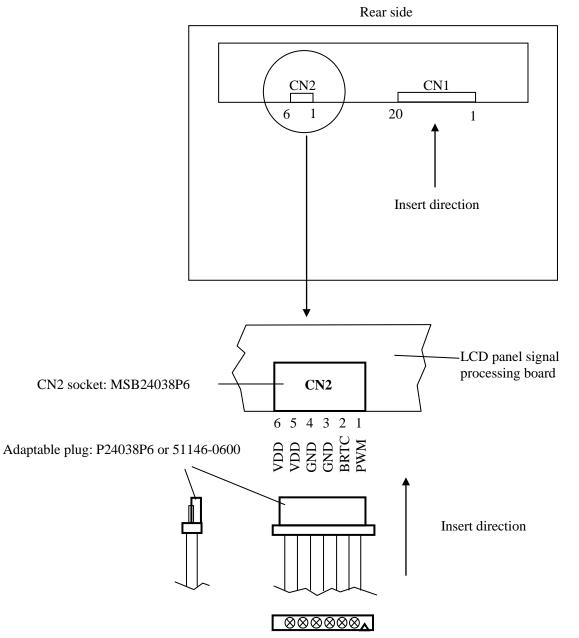
Note1: All GND and VCC terminals should be used without any non-connected lines.

Note2: See "4.8 SCANNING DIRECTIONS".

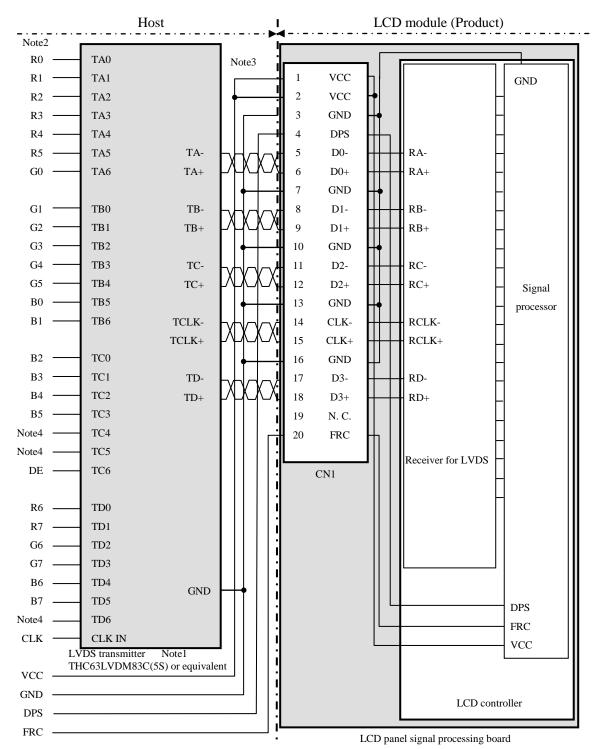
Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note4: See "4.6 DISPLAY COLORS AND INPUT DATA SIGNALS".

Note5: See "4.5.4 Connection between receiver and transmitter for LVDS".

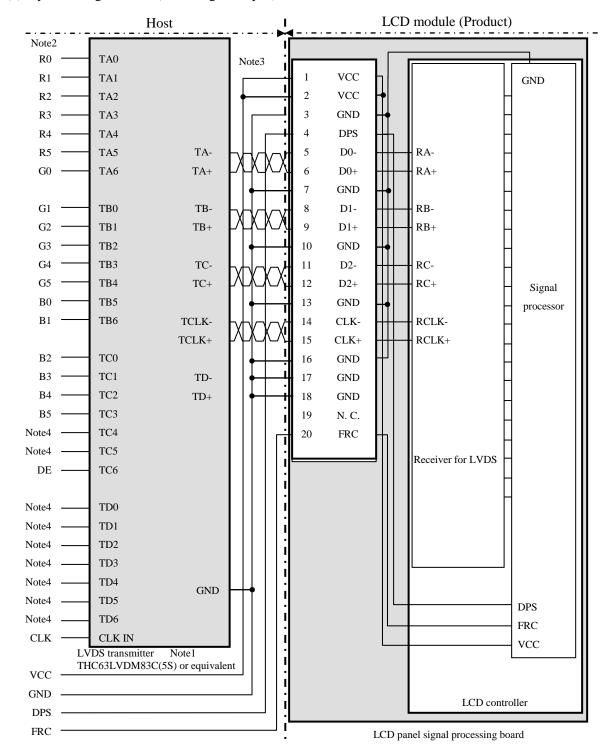

4.5.2 LED driver

CN2 socket (LCD module side): MSB24038P6 (STM)


Adaptab	le plug: P	24038P6 (STM) or 51146-0600 (M	olex)
Pin No.	Symbol	Signal	Remarks
1	PWM	Luminance control	PWM dimming
2	BRTC	Backlight ON/OFF control	High: ON Low or Open: OFF
3	GND	Ground	-
4	GND	Ground	-
5	VDD	Power supply	-
6	VDD	Power supply	-

Note1: All VDD and GND terminals should be used without any non-connected lines.

4.5.3 Positions of socket



- 4.5.4 Connection between receiver and transmitter for LVDS
- (1) Input data signal: 8-bit (FRC: Low)

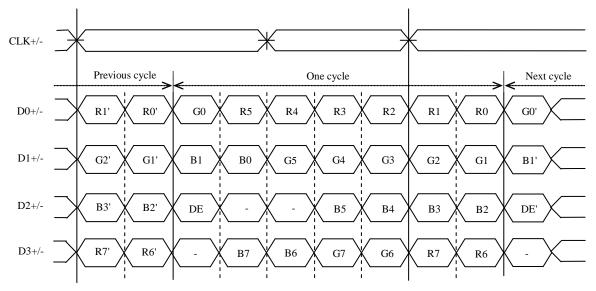
- Note1: Recommended transmitter: THC63LVDM83C(5S) (THine Electronics Inc.) or equivalent.
- Note2: LSB (Least Significant Bit) R0, G0, B0 MSB (Most Significant Bit) R7, G7, B7
- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TC4, TC5 and TD6 are not used inside the product, but do not keep them open to avoid noise problem.

NL10276AC30-48D

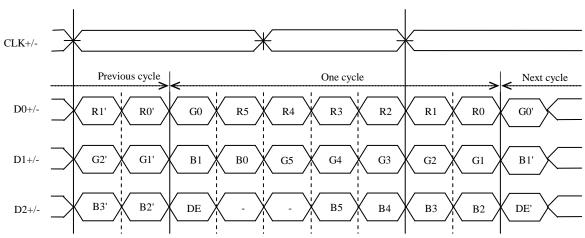
(2) Input data signal: 6-bit (FRC: High or Open)

Note1: Recommended transmitter: THC63LVDM83C(5S) (THine Electronics Inc.) or equivalent.

Note2: LSB (Least Significant Bit) - R0, G0, B0 MSB (Most Significant Bit) - R5, G5, B5


- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TC4, TC5 and TD0-6 are not used inside the product, but do not keep them open to avoid noise problem.

NL10276AC30-48D



4.5.5 Input data mapping

(1) Input data signal: 8-bit

Note1: LSB (Least Significant Bit) – R0, G0, B0 MSB (Most Significant Bit) – R7, G7, B7
 Note2: Twist pair wires with 100Ω(Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

(2) Input data signal: 6-bit

Note1: LSB (Least Significant Bit) – R0, G0, B0 MSB (Most Significant Bit) – R5, G5, B5
Note2: Twist pair wires with 100Ω(Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

4.6.1 Combinations of input data signals and FRC signal

This product can display equivalent of 16,194,277 colors and 262,144 colors by combination of input data signals and FRC signal. See the following table.

Combination	Input data signals	CN1- Pin No.17 and 18	FRC terminal	Display colors	Remarks
1	8-bit	D3+/-	Low	16,194,277	Note1
2	6-bit	GND	High or Open	262,144	Note2

Note1: See "4.6.2 16,194,277 colors".

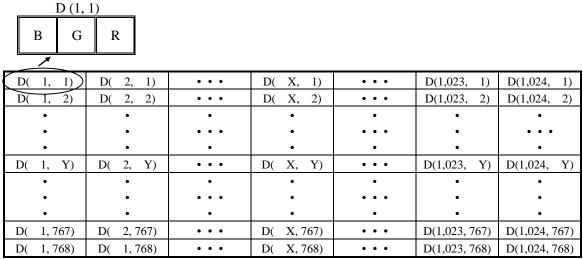
Note2: See "4.6.3 262,144 colors".

4.6.2 16,194,277 colors

This product can display 16,194,277 colors with 253 gray scales by combination ①. (See "**4.6.1 Combinations of input data signals and FRC signal**".) Also the relation between display colors and input data signals is as follows.

Display: otom R7 R6 R2 R4 R3 R2 R1 R0 R0 R0 R5 R4 R3 R2 R R0 R7 R6 R5 R4 R3 R2 R R0 R7 R6 R5 R4 R3 R2 R R0 R7 G6 G5 G4 G3 G2 G1 G0 0<											lote	1)														
Sector Back 0	Display	colors																								
Blue 0	Disping	COIOIS	R7	7 R6	R5	R4	R3	R2	R1	R0	G7	' G6	6 G5	G4	G3	G2	G1	G0	B7	B6	6 B5	B4	B3	B2	B1	B0
Index 1 <td></td> <td>Black</td> <td>0</td>		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yeilow 1 <td></td> <td>Blue</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td>		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	Х	Х
Yeilow 1 <td>ors</td> <td>Red</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td> <td>0</td>	ors	Red	1	1	1	1	1	1	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yeilow 1 <td>Col</td> <td>Magenta</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td>	Col	Magenta	1	1	1	1	1	1	Х	Х	0	0	0	0	0	0	0	0	1	1	1	1	1	1	Х	Х
Yeilow 1 <td>sic</td> <td>Green</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	sic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	Х	Х	0	0	0	0	0	0	0	0
White11	Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1	Х	Х
Black 0 <td></td> <td>Yellow</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		Yellow	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1	Х	Х	0	0	0	0	0	0	0	0
Appendication Appendi		White	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1	Х	Х
and biask dark 0 <		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Properiod 1	1)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Properiod 1	cale	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Properiod 1	ıy s	\uparrow													:								:			
Properiod 1	grê	\downarrow													:								:			
Properiod 1	ked	bright	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black 0 <td>ц</td> <td>e</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td>	ц	e	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black 0 <td></td> <td>Red</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>х</td> <td>Х</td> <td>0</td>		Red	1	1	1	1	1	1	х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dark 0 <td></td> <td>Black</td> <td>0</td>		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	scal	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ay	\uparrow													:								:			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 g1	\downarrow													:								:			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	reel	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0
binkit 0 <td></td> <td>Green</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	Х	Х	0	0	0	0	0	0	0	0
ark 0		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	cale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	y s						:								:								:			
	gra														:								:			
	lue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0
	В	ongin																		1	1	1	1			
		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	х	х

Note1: X means 0 or 1.


4.6.3 262,144 colors

This product can display 262,144 colors with 64 gray scales by combination ②. (See "**4.6.1 Combinations of input data signals and FRC signal**".) Also the relation between display colors and input data signals is as follows.

Display colors							Dat	a sign	al (0:	Low	level	, 1: H	igh le	vel)					
Display	y colors	R 5	R4	R 3	R 2	R 1	R 0	G5	G4	G3	G2	G1	G0	B 5	B4	B 3	B 2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
isic	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
$\mathbf{B}a$	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	1			:							:								
l gr	\downarrow			:	:						:						:		
Rec	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
/ sc	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green gray scale	1			:															
en g	↓ 	0	0		:	0	0	1	1	1	:	0	1	0	0	0	:	0	0
Gre	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
•	Green	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
ale	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0 0	0	0 0	0	0 0	0 0	0 0	0 1	1 0									
sci	dark ↑	0	0	0	. 0	0	0	0	0	0	. 0	0	0	0	0	0	. 0	1	0
Blue gray scale	↑ I																		
	\ ↓	0	0	0	. 0	0	0	0	0	0	. 0	0	0	1	1	1	. 1	0	1
	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Dide	v	v	v	v	v	0	U U	v	v	v	v	0			-	-	-	-

NL10276AC30-48D

4.7 DISPLAY POSITIONS

Note1: See "4.8 SCANNING DIRECTIONS".

4.8 SCANNING DIRECTIONS

The following figures are seen from a front view.

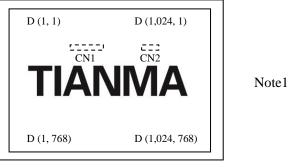


Figure 1. Normal scan (DPS: Low or Open)

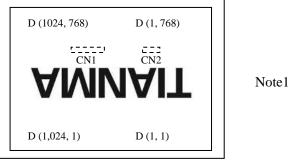
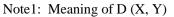
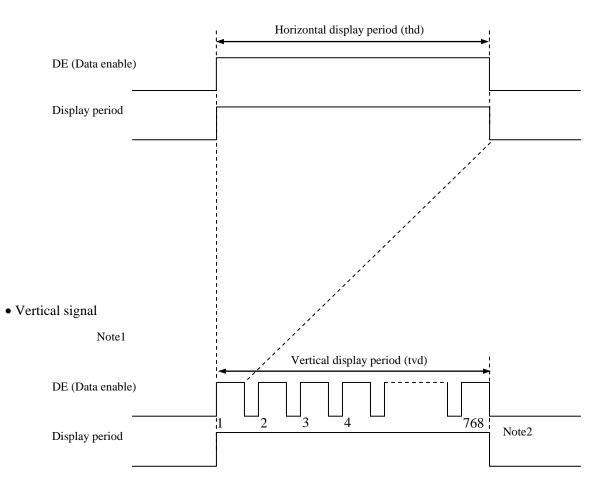



Figure2. Reverse scan (DPS: High)



D (X, Y): Input data signals for LCD panel signal processing board

4.9 INPUT SIGNAL TIMINGS

- 4.9.1 Outline of input signal timings
 - Horizontal signal

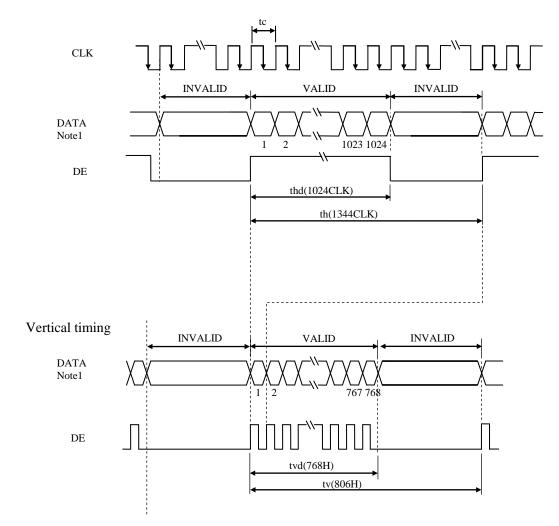
Note1

Note1: This diagram indicates virtual signal for set up to timing. Note2: See "**4.9.3 Input signal timing chart**" for the pulse number.

4.9.2 Timing characteristics

.2 Thing	enaracteristics	,					(Not	e1, Note2, Note3)	
	Parameter	Symbol	min.	typ.	max.	Unit	Remarks		
	Fre	1/tc	52.0	65.0	71.0	MHz	15.385ns (typ.)		
CLK	Du	ty ratio	-				-		
	Rise tim	-		-		ns	-		
	CLK-DATA	Setup time	-				ns		
DATA	CLK-DATA	Hold time	-		-		ns	-	
	Rise tim	ne, Fall time	-				ns		
	Horizontal	Cycle	th	16.542	20.676	26.88	μs	48.363kHz (typ.)	
		Cycle		1,114	1,344	1,400	CLK	48.505KHZ (typ.)	
		Display period	thd	1,024			CLK	-	
	T T 1	Cycle	tv	13.34	16.666	20.0	ms	60.0Hz (typ.)	
DE	Vertical (One frame)	Cycle	ιv	780	806	845	Н	00.0112 (typ.)	
	(one nume)	Display period	tvd		768			-	
	CLK-DE	Setup time	-				ns		
	CLK-DE	Hold time	-		-			-	
	Rise tim	Rise time, Fall time					ns		

Note1: Definition of parameters is as follows.


tc = 1CLK, th = 1H

Note2: See the data sheet of LVDS transmitter.

Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

4.9.3 Input signal timing chart

Horizontal timing

Note1: DATA = R0-R7, G0-G7, B0-B7 or R0-R5, G0-G5, B0-B5

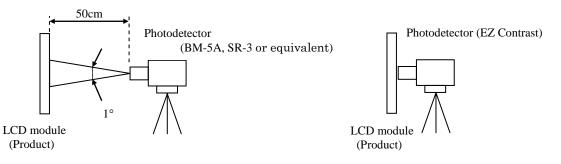
NL10276AC30-48D

4.10 OPTICS

4.10.1 Optical characteristics

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4.10.1 Optica	ii onuru							(Note1,	Note2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Paramete	er	Condition	Symbol	min.	typ.	max.	Unit		Remarks
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Luminan	ce		L	270	350	-	cd/m ²		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Contrast ra	atio		CR	500	900	-	-		Note3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				LU	-	1.25	1.4	-		Note4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		White	x coordinate	Wx	0.250	0.300	0.350	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		white	y coordinate	Wy	0.265	0.315	0.365	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Red	x coordinate	Rx	-	0.642	-	-		
$\frac{\text{Green}}{\text{Green}} \frac{\mathbf{x} \operatorname{coordinate}}{\mathbf{y} \operatorname{coordinate}} = \frac{\text{Gx}}{\text{Gy}} - \frac{0.315}{0.630} - \frac{-}{0.630} - \frac{-}{0.0000} + \frac{-}{0.00000} + \frac{-}{0.0000000000000000000000000000000000$	Chromaticity		y coordinate	Ry	-	0.336	-	-		
$\frac{ \mathbf{r} _{\mathbf{r}}}{ \mathbf{r} _{\mathbf{r}}} = \frac{ \mathbf{r} _{\mathbf{r}}}{ \mathbf{r} _{\mathbf{r}}} = \mathbf$	Cinomaticity	Green	x coordinate	Gx	-	0.315	-	-		Note5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			y coordinate	Gy	-	0.630	-	-		Notes
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Blue	x coordinate	Bx	-	0.152	-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			y coordinate	By	-	0.060	-	-		
Response timeWhite to blackToff-1120msequivalentNote7Right $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR 7088- \circ EZNote8Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 7088- \circ EZNote8	Color gamut			С	65	72	-	%		
NotestN	Desponse t	ima	Black to white	Ton	-	14	20	ms	BM-5A or	Note6
Viewing angle $\begin{array}{ c c c c c c c c } \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta L & 70 & 88 & - & \circ \\ \hline Up & \theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Up & \theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & \circ \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10 & \theta U & 70 & 88 & - & 0 \\ \hline Left & \theta U = 0^{\circ}, \theta D = 0^{\circ},$	Response time		White to black	Toff	-	11	20	ms	equivalent	Note7
Viewing angle Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 70 88 - \circ Contrast Notes		Right	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θR	70	88	-	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Viewing angle	Left	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θL	70	88	-	0	EZ	N-4-9
Down $\theta R = 0^\circ, \theta L = 0^\circ, CR \ge 10$ θD 70 88 - °		Up	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θU	70	88	-	0	Contrast	notes
		Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	70	88	-	0		

Note1: These are initial characteristics.


Note2: Measurement conditions are as follows.

Ta= 25°C, VCC= 3.3V, VDD= 12.0V, PWM duty ratio: 100%,

Display mode: XGA, Horizontal cycle= 1/48.363kHz, Vertical cycle= 1/60.0Hz,

DPS= Low or Open: Normal scan, FRC=Low (8-bit mode)

Optical characteristics are measured at luminance saturation 20minutes after the product works in the dark room. Also measurement methods are as follows.

- Note3: See "4.10.2 Definition of contrast ratio".
- Note4: See "4.10.3 Definition of luminance uniformity".
- Note5: These coordinates are found on CIE 1931 chromaticity diagram.
- Note6: Product surface temperature: TopF= 29°C
- Note7: See "4.10.4 Definition of response times".
- Note8: See "4.10.5 Definition of viewing angles".

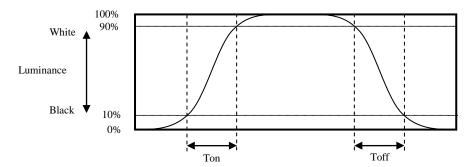
4.10.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

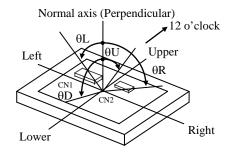
Contrast ratio (CR) = Luminance of white screen Luminance of black screen

4.10.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.


$$Luminance uniformity (LU) = \frac{Maximum luminance from (1) to (9)}{Minimum luminance from (1) to (9)}$$

The luminance is measured at near the 9 points shown below.


	1	◀	— н —	
	i	H/10	H/2	H/10
V	7/10	1	2	3
V V	//2	4	5	6
	7/10		8	9

4.10.4 Definition of response times

Response time is measured at the time when the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 10% up to 90%. Also Toff is the time when the luminance changes from 90% down to 10% (See the following diagram.).

4.10.5 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

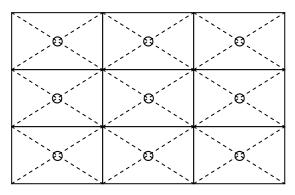
This lifetime is the estimated value, and is not guarantee value.

	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit	
	25°C (Ambient temperature of the product) Continuous operation, PWM duty ratio: 100%	50,000	h
LED elementary substanc	70°C (Temperature of LCD panel surface and LCD module's rear shield surface) Continuous operation, PWM duty ratio: 100%	30,000	h

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.



6. RELIABILITY TESTS

Test item	Condition	Judgment No	ote1	
High temperature and humidity (Operation)	 60 ± 2°C, RH= 90%, 240hours Display data is white. 			
High temperature (Operation)	 70 ± 3°C, 240hours Display data is white. 			
Heat cycle (Operation)	 (1) -20 ± 3°C Ihour 70 ± 3°C Ihour (2) 50cycles, 4hours/cycle (3) Display data is white. 	No display malfunctions		
Thermal shock (Non operation)	 30 ± 3°C, 30minutes 80 ± 3°C, 30minutes 2 100cycles, 1hour/cycle 3 Temperature transition time is within 5 minutes. 	No display malfunctions		
ESD (Operation)	 150pF, 150Ω, ±10kV 9 places on a panel surface Note2 10 times each place at 1 sec interval 			
Vibration (Non operation)	 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 50 times each direction 	No display malfunctions		
Mechanical shock (Non operation)	 ① 294m/s², 11ms ② ±X, ±Y, ±Z directions ③ 3 times each direction 	 No physical damages 		

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

☆

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS

* Do not

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s² and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6 N (\$\$\phi16mm jig)\$)

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② When the product is put on the table temporarily, display surface must be placed downward.
- ③ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (a) When handling the product, do not apply any pressure on the LCD panel surface directly. It can cause a non-recoverable display mura.
- (5) The torque for product mounting screws must never exceed 0.392N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 4.5 mm.
- ⑤ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
- ⑦ Do not press or rub on the sensitive product surface. When cleaning the panel surface, wipe it with a soft dry cloth.
- (a) Do not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is
 recommended for protection of product surface. Adhesive type protection sheet may change color
 or characteristics of the polarizer.
- ⁽¹⁰⁾ Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- ③ Do not operate in high magnetic field. If not, circuit boards may be broken.
- ④ This product is not designed as radiation hardened.

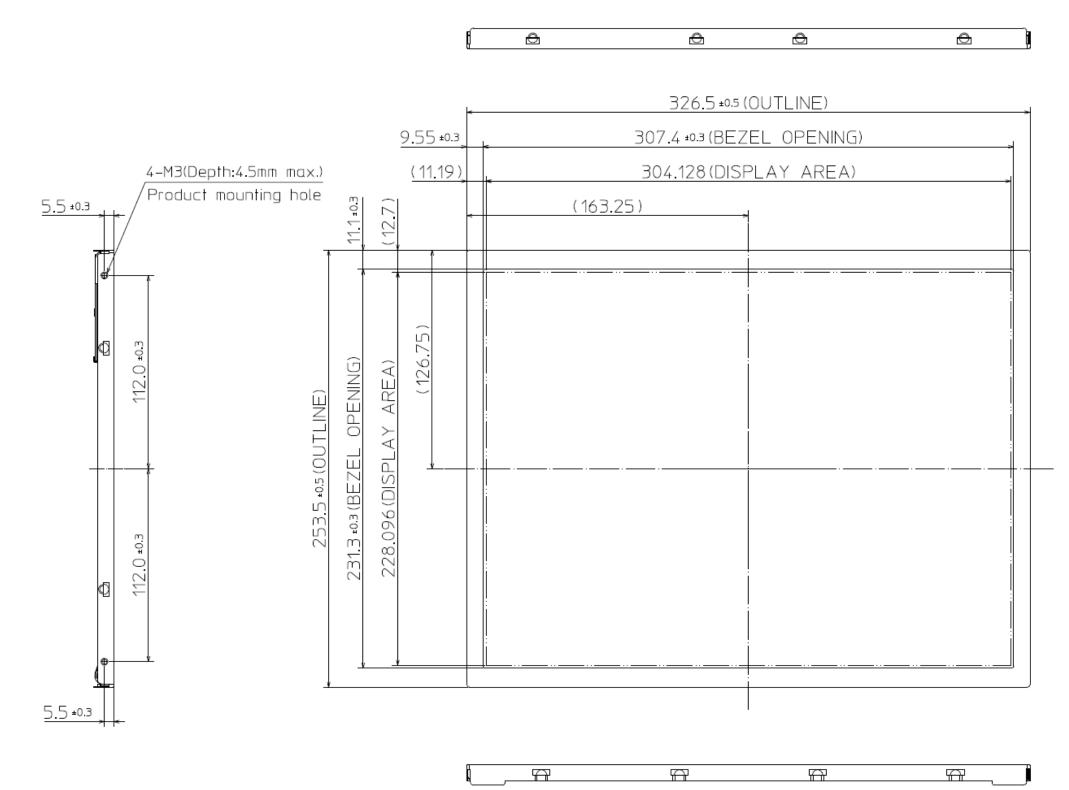
7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Characteristics of the LCD (such as response time, luminance, color uniformity and so on) may be changed depending on ambient temperature. If the product is stored under condition of low temperature for a long time, it may cause display mura. In this case, the product should be operated after enough time being left under condition of operating temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- (4) The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.

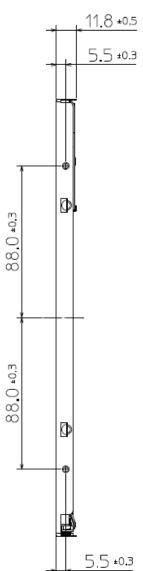
7.3.4 Others

- ① All GND, VCC and VDD terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ See "REPLACEMENT MANUAL FOR LAMP HOLDER SET", when replacing lamp holder set.
- ④ Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to TMJ.
- (5) The information of China RoHS (II) six hazardous substances or elements in this product is as follows.

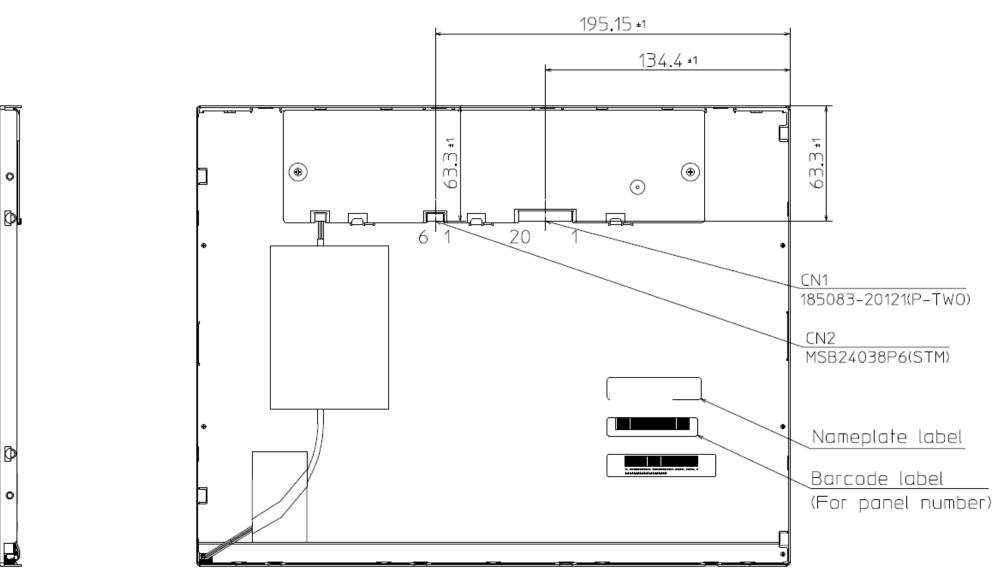

	China RoHS (II) six hazardous substances or elements								
Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)				
×	0	0	0	0	0				

Note1: (): This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of GB/T26572-2011 standard regulation.

 \times : This indicates that the poisonous or harmful material in all the homogeneous materials for this part is above the limitation level of GB/T26572-2011 standard regulation.


8. OUTLINE DRAWINGS

8.1 FRONT VIEW


Note1: The values in parentheses are for reference.

Note2: The torque for product mounting screws must never exceed 0.392 N·m. And the length of product mounting screws must be ≤ 4.5 mm.

Unit: mm

8.2 REAR VIEW

Unit: mm

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

FORTEC Elektronik AG Lechwiesenstr. 9 86899 Landsberg am Lech

Phone: E-Mail: Internet: +49 8191 91172-0 sales@fortecag.de www.fortecag.de

FORTEC Elektronik AG Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 office@fortec.at www.fortec.at

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG Bahnhofstraße 3

5436 Würenlos

Phone: E-Mail: Internet:

info@altrac.ch www.altrac.ch

+41 44 7446111

Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: -E-Mail: i Internet: .

+44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 info@apollodisplays.com www.apollodisplays.com

Fortec Group Members

United Kingdom

DISTEC

FORTEC GROUP MEMBER

