

Datasheet

InnoLux

G238HCJ-LH1

CH-01-078

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

] Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: G238HCJ SUFFIX: LH1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for yo signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
陳立錚	林秋森	許文進

Version 2.0

CONTENTS

1.	GENERAL DESCRIPTION	
	1.1 OVERVIEW	
	1.2 FEATURE	
	1.3 APPLICATION	
	1.4 GENERAL SPECIFICATIONS	
	1.5 MECHANICAL SPECIFICATIONS	
2.	ABSOLUTE MAXIMUM RATINGS	
	2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
	2.2 ELECTRICAL ABSOLUTE RATINGS	
	2.2.1 TFT LCD MODULE	
	2.2.2 BACKLIGHT UNIT	
3.	ELECTRICAL CHARACTERISTICS	
	3.1 TFT LCD MODULE	
	3.2 BACKLIGHT UNIT	
4.	BLOCK DIAGRAM	
	4.1 TFT LCD MODULE	
5.	INPUT TERMINAL PIN ASSIGNMENT	
	5.1 TFT LCD MODULE (VESA ONLY)	
	5.2 BACKLIGHT UNIT(Converter connector pin)	
	5.3 COLOR DATA INPUT ASSIGNMENT	
6.	INTERFACE TIMING	
	6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
	6.2 POWER ON/OFF SEQUENCE	
7.	OPTICAL CHARACTERISTICS	
	7.1 TEST CONDITIONS	
_	7.2 OPTICAL SPECIFICATIONS	
	RELIABILITY TEST CRITERIA	
9.		
	9.1 PACKING SPECIFICATIONS	
	9.2 PACKING METHOD	
	9.3 UN-PACKING METHOD	
10		
	10.1 INX MODULE LABEL	
11		
	11.1 ASSEMBLY AND HANDLING PRECAUTIONS	
	11.2 STORAGE PRECAUTIONS	
	11.3 OTHER PRECAUTIONS	28

3 October 2022

PRODUCT SPECIFICATION

12. MECHANICAL CHARACTERISTICS	
Appendix. SYSTEM COVER DESIGN NOTICE	

Version 2.0

3 October 2022

REVISION HISTORY

Version	Date	Page	Description
2.0	2022.10	All	Approval Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G238HCJ-LH1 is a 23.8" TFT Liquid Crystal Display IAV module with WLED Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1920 x 1080 Full HD mode and can display up to 16.7M colors. The converter module for Backlight is built in.

1.2 FEATURE

- FHD (1920 x 1080 pixels) resolution
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	527.04 (H) x 296.46 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B x 1080	pixel	-
Pixel Pitch	0.2745 (H) x 0.2745 (V)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-
Module Power Consumption	34.95	W	Тур.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	542.5	543	543.5	mm	
Module Size	Vertical(V)	316.9	317.4	317.9	mm	(1)
	Depth(D)	18.925	19.425	19.925	mm	
Bezel Area	Horizontal	529.7	530.2	530.7	mm	-
Bezel Alea	Vertical	299.1	299.6	300.1	mm	
Active Area	Horizontal		527.04		mm	
Active Area	Vertical		296.46		mm	
We	ight	-	2820		g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

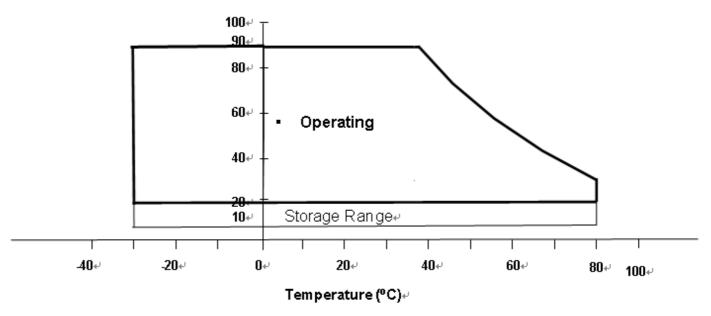
Version 2.0

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltom	Sumbol	Va	lue	Linit	Niete
Item	Symbol	Min.	Max.	Unit	Note
Operating Ambient Temperature	T _{OP}	-30	+80	°C	(1)(2)
Storage Temperature	T _{ST}	-30	+80	°C	(1)(2)

Note (1)


(a) 90 %RH Max.

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 80°C (Panel surface temperature).

Relative Humidity (%RH)↔

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltom	Symbol Value		ue	Linit	Nete
Item	Symbol	Min.	. Max. Unit		Note
Power Supply Voltage	VCC	-0.3	6.0	V	(1)
Logic Input Voltage	Vin	-0.3	3.6	V	(1)

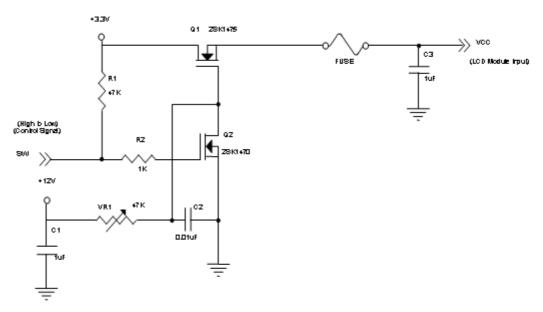
2.2.2 BACKLIGHT UNIT

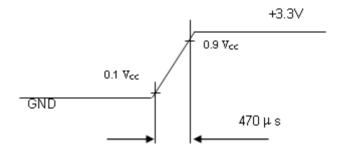
ltem	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Unit	NOLE	
Converter Voltage	Vi	-0.3	26.4	V	(1) , (2)	
Enable Voltage	EN	-0.3	5.5	V		
Backlight Adjust	Dimming	-0.3	5.5	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

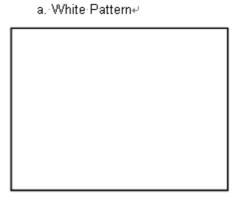

3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE

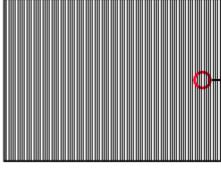
Parameter		Symbol		Value		Unit	Note
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Vo	ltage	V _{cc}	4.5	5.0	5.5	V	-
Ripple Voltage	е	V_{RP}	-	-	400	mVp-p	
Inrush Curren	it	I _{INRUSH}	-	-	3.0	А	(2)
White		lcc	-	0.99	1.45	А	(3)a
Power Supply Current	Black		-	0.45	0.5	А	(3)b
	Vertical Stripe		-	0.74	0.81	А	(3)c
LVDS differential inpu	it voltage	V_{id}	100	-	600	mV	
LVDS common input voltage		V _{ic}	1.0	1.2	1.4	V	
Differential Input Voltage for	"H" Level	V _{IH}	-	-	100	mV	-
LVDS Receiver Threshold	"L" Level	V _{IL}	-100	-	-	mV	-
Terminating Resi	istor	Rτ	-	100	-	Ohm	-

Note (1)The module should be always operated within above ranges.

Note (2)Measurement Conditions:

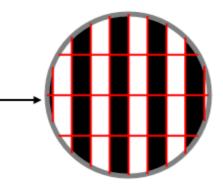

Version 2.0

3 October 2022


Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 ± 2 °C, DC Current

and $f_{\rm v}$ = 60 Hz, whereas a power dissipation check pattern below is displayed.

Active Area⊬

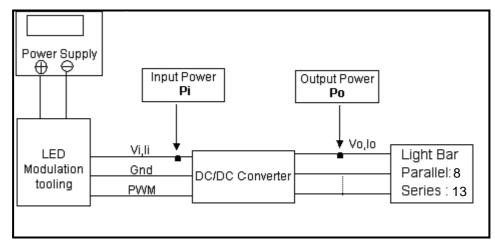

c. Vertical Stripe Patterne

Active Area₽

b. Black Patterne

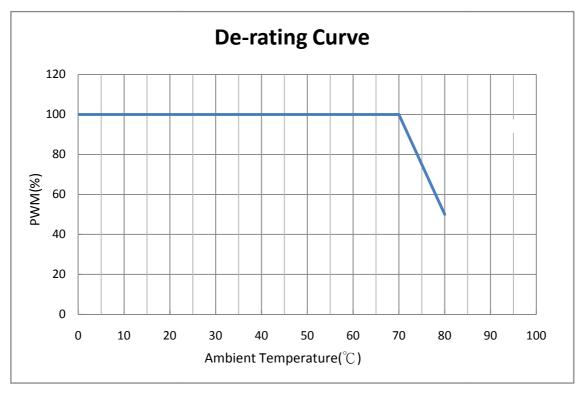
Active Area₊

3.2 BACKLIGHT UNIT


Parameter		Sumbol	Value		Unit	Note	
		Symbol	Min.	Тур.	Max.	Unit	Note
Converter Inp	ut Voltage	Vi	21.6	24.0	26.4	V _{DC}	(Duty 100%)
Converter Input R	Ripple Voltage	V _{iRP}	-	-	500	mV	
Converter Inp	ut Current	li	-	1.25	1.5	A _{DC}	@ Vi = 24V (Duty 100%)
Converter Inrus	sh Current	I _{iRUSH}	-	-	3.0	А	<pre>@ Vi rising time=20ms (Vi=24V)</pre>
Input Power Co	Input Power Consumption		-	30	36	W	(1), @ Vi = 24V (Duty 100%)
EN Control Level	Backlight on	ENLED	2.5	3.3	5.0	V	
	Backlight off	(BLON)	0	-	0.3	V	
PWM Control Level	PWM High Level	Dimming	2.5	3.3	5.0	V	
F WW CONTO Level	PWM Low Level	(E_PWM)	0	-	0.15	V	
PWN Noise	Range	VNoise	-	-	0.1	V	
PWM Control I	Frequency	f _{PWM}	100	200	1,000	Hz	(2), Suggestion@200Hz
			5	-	100	%	(2), @ 100Hz <f<sub>PWM<500Hz</f<sub>
PWM Dimming Control Duty Ratio		-	10	-	100	%	(2), @ 500Hz≦f _{PWM} <1kHz
LED Life	Time	L _{LED}	50,000		-	Hrs	(3)

Version 2.0

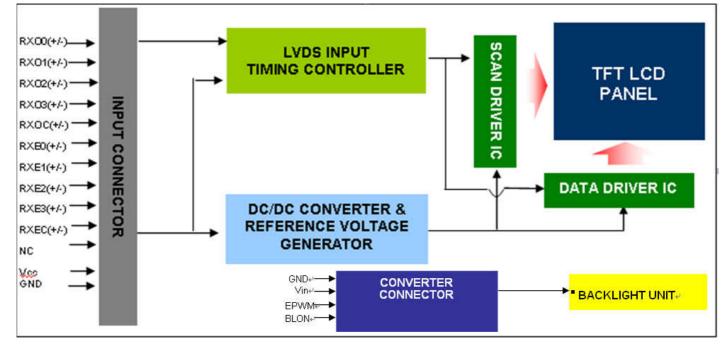
3 October 2022


Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

- Note (2) At 100 ~499Hz PWM control frequency, duty ratio range is restricted from 5% to 100%. At 500 ~1kHz PWM control frequency, duty ratio range is restricted from 10% to 100% If PWM control frequency is applied in the range 1KHZ above, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.
- Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.

Note (4) De-rating Curve

De-rating the BLU from 70 $^\circ\!\mathrm{C}$ and 50% PWM at 80 $^\circ\!\mathrm{C}$ to avoid damaging the module.



Version 2.0

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE (VESA ONLY)

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	For LCD internal use only, Do not connect
26	NC	For LCD internal use only, Do not connect
27	NC	For LCD internal use only, Do not connect
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.:

FCN: WF13-422-3033

P-TWO: 187098-30091 or equivalent.

Note (2) User's connector Part No:

Mating Wire Cable Connector Part No.: FI-X30H(JAE) or FI-X30HL(JAE)

Mating FFC Cable Connector Part No.: 217007-013001 (P-TWO) or JF05X030-1 (JAE).

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

5.2 BACKLIGHT UNIT(Converter connector pin)

Pin	Name	Description					
1	Namo	Doorption					
· ·							
2							
3	V _{BL}	DC 24V power supply					
4							
5							
6							
7							
8	GND	Ground					
9							
10							
11	NC	NC					
12	EN	BL ON/OFF (ON:DC 3.3V, OFF:0V)					
13	NC	NC					
14	E_PWM	External PWM Control (H Level: DC 5V, L Level: 0V)					

Note (1)Connector Part No.: CviLux :CI0114M1HR0-LA-NH or FCN: JH2-D4-143N or equivalent. Note (2)User's connector Part No.: CviLux CI0114S0000 or equivalent.

Version 2.0

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

										·		D	ata	Sig	nal			•							
	Color	Red				Green					Blue														
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2		G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nou	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0.0011	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray Scale Of	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

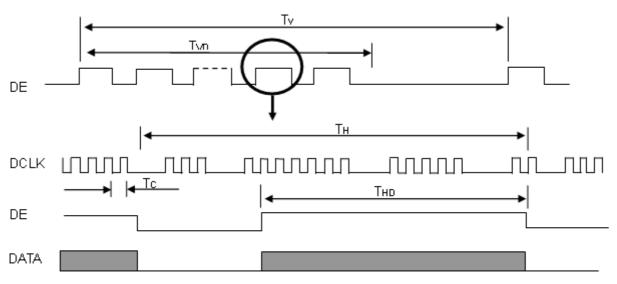
Note (1)0: Low Level Voltage, 1: High Level Voltage

Version 2.0

3 October 2022

6. INTERFACE TIMING

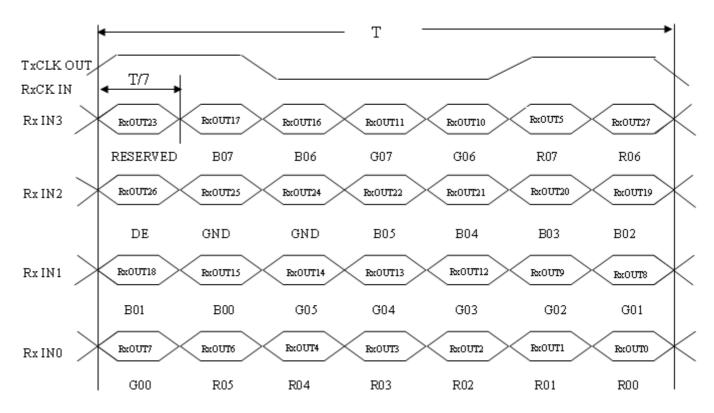
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

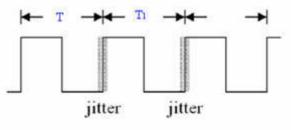

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	58.54	74.25	97.98	MHz	-
	Period	Tc	-	13.47	-	ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	-	0.02*Tc	ns	(a)
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(b)
	Spread spectrum modulation range	F _{clkin_mod}	0.97*Fc		1.03*Fc	MHz	
	Spread spectrum modulation frequency	F _{SSM}			100	KHz	(c)
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb
Vertical Display	Total	Τv	1110	1125	1220	Th	-
Term	Active Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	45	Tv-Tvd	Th	-
	Total	Th	1050	1100	1150	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	960	960	960	Тс	-
Display Term	Blank	Thb	Th-Thd	140	Th-Thd	Тс	-

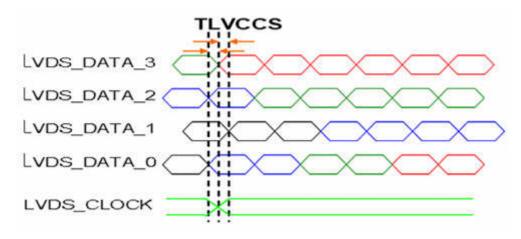
Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

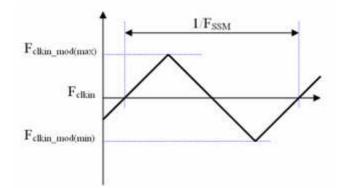

INPUT SIGNAL TIMING DIAGRAM



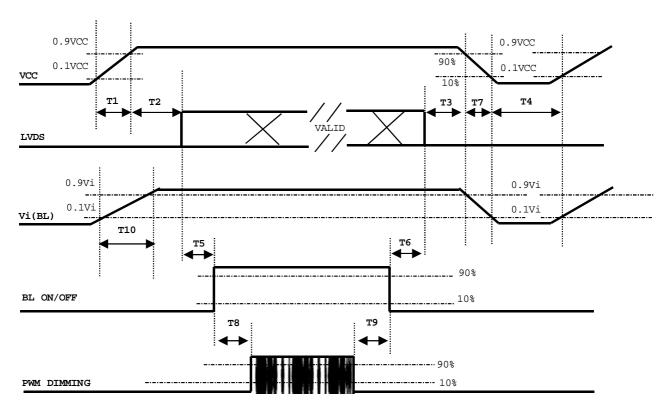
PRODUCT SPECIFICATION


TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. $T_{rcl} = I T1 - TI$



Note (b) Input Clock to data skew is defined as below figures.



Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

3 October 2022

Deremeter		Units		
Parameter	Min	Тур	Max	Min
T1	0.5	-	10	ms
Т2	0	-	50	ms
Т3	0	-	50	ms
Т4	500	-	-	ms
T5	450	-	-	ms
Т6	200	-	-	ms
Τ7	10	-	100	ms
Т8	10	-	-	ms
Т9	10	-	-	ms
T10	20	_	50	ms

Note:

(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.

(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.

(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.

(4) T4 should be measured after the module has been fully discharged between power off and on period.

(5) Interface signal shall not be kept at high impedance when the power is on.

(6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.

(7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

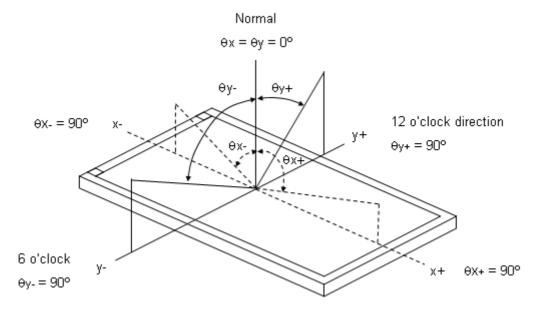
Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	oC				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	According to typical value and tolerance in						
Input Signal	"ELECTRICAL CHARACTERISTICS"						
PWM Duty Ratio	D	100	%				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

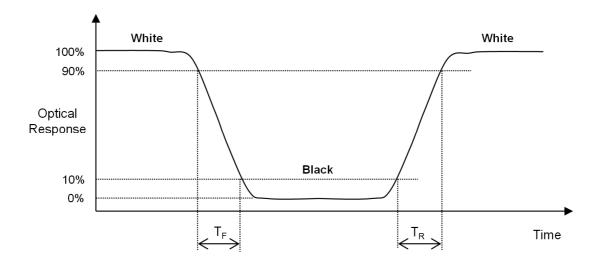
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		0.602	0.652	0.702		
	Reu	Ry		0.288	0.338	0.388		
	Green	Gx		0.268	0.318	0.368		
Color	Green	Gy		0.566	0.616	0.666	_	(1), (5)
Chromaticity	Blue	Bx	θX = 0°, θY = 0°	0.098	0.148	0.198	-	(1), (3)
	Diue	By	Grayscale Maximum	0.005	0.055	0.105		
	White	Wx		0.263	0.313	0.363		
	White	Wy		0.279	0.329	0.379		
Center Lumina	Center Luminance of White			700	1000			(4), (5)
Contrast	Ratio	CR		700	1000		-	(2), (5)
Pospons	o Timo	TR	θ X=0° , θ Y =0°	-	14	19	-	(3)
Кезропз	Response Time		0 X=0 , 01 =0		11	16	-	(3)
White Va	White Variation		θX=0°, θY =0°	70	75	-	%	(5), (6)
	Horizontal	θX+		80	88	-		
Viewing Angle	Honzontai	θΧ-	CR≧10	80	88	-	Dog	(1) (5)
	Vertical	θ Y +		80	88	-	Deg.	(1), (5)
	ventical	θΥ-		80	88	-		

Definition :


Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63) White : Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)

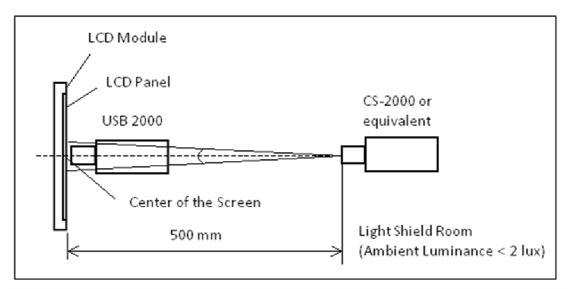
PRODUCT SPECIFICATION


Note (1)Definition of Viewing Angle ($\theta x, \theta y$):

Note (2)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point. Contrast Ratio (CR) = White / Black

Note (3)Definition of Response Time (T_R, T_F) :

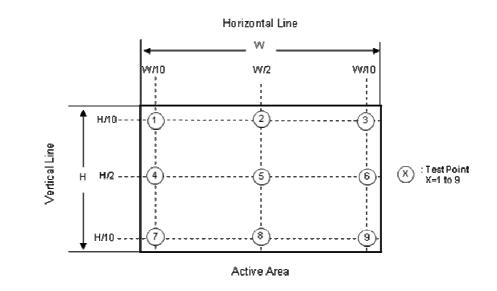


Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.



Note (6) Definition of White Variation (δW):

Measure the luminance of White at 9 points.

Luminance of White : L(X), where X is from 1 to 9.

 $\delta W = \frac{\text{Minimum [L(1) to L(9)]}}{\text{Maximum [L(1) to L(9)]}} \times 100\%$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note			
High Temperature Storage Test	$80^\circ C$, 240 hours				
Low Temperature Storage Test	-40°C , 240 hours				
Thermal Shock Storage Test	-30° C, 0.5 hour \leftrightarrow 70° C, 0.5 hour; 100cycles, 1 hour/cycle)	(1),(2)			
High Temperature Operation Test	$80^\circ C$, 240 hours	(4),(5)			
Low Temperature Operation Test	-30°C , 240 hours				
High Temperature & High Humidity Operation Test	$60^\circ\!{ m C}$, RH 90%, 240 hours				
	150pF, 330 Ω , 1 sec/cycle				
ESD Test (Operation)	Condition 1 : panel contact, ± 8 KV				
	Condition 2 : panel non-contact ± 15 KV				
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$ direction				
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction	(2), (3)			

Note (1)There should be no condensation on the surface of panel during test ,

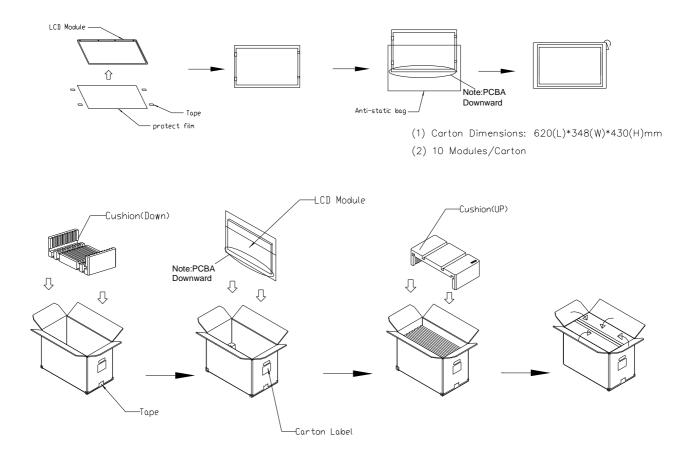
- Note (2) Temperature of panel display surface area should be 80°C Max. And it also should be followed by the de-rating condition as 3.2 Backlight Unit note (4).
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

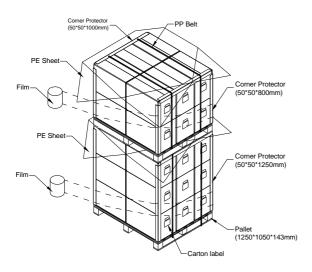
9. PACKAGING

9.1 PACKING SPECIFICATIONS

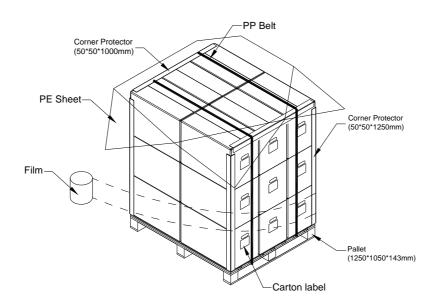
- (1) 10 LCD modules / 1 Box
- (2) Box dimensions: 620(L) X 348(W) X 430(H) mm
- (3) Weight: approximately: 30.4kg (10 modules per box)

9.2 PACKING METHOD




Figure. 9-1 Packing method

Sea / Land Transportation (40ft/20ft Container)


For ocean

Sea / Land Transportation (40ft HQ Container)

Film PE Sheet

For air

		<u> </u>	0
\sim	reini	n .)	()
ve	rsio	I ∠ .	U

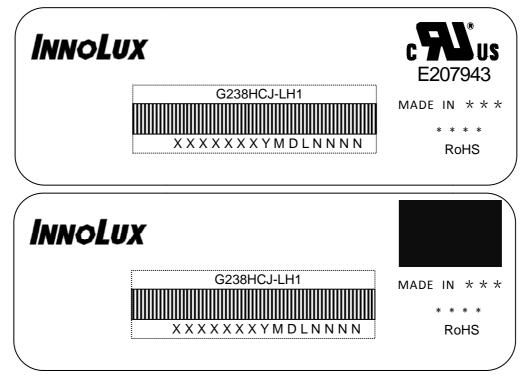
PRODUCT SPECIFICATION

9.3 UN-PACKING METHOD

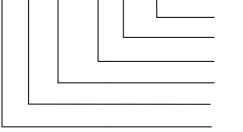
Figure. 9-3 UN-Packing method

Version 2.0

3 October 2022



10. DEFINITION OF LABELS


10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Note (1) Safety Compliance(UL logo) will open after C1 version.

- (a) Model Name: G238HCJ-LH1
- (b) * * * * : Factory ID
- (c) Serial ID: X X X X X X Y M D X N N N N

Serial INX Internal Use Year, Month, Date INX Internal Use Revision INX Internal Use

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

Version 2.0

3 October 2022

11. PRECAUTIONS

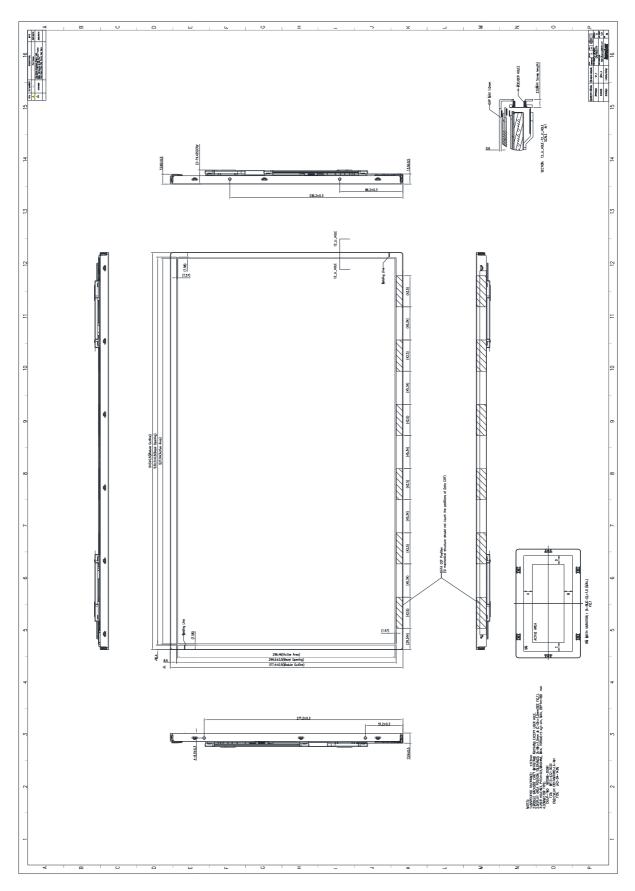
11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

(1)When storing for a long time, the following precautions are necessary.

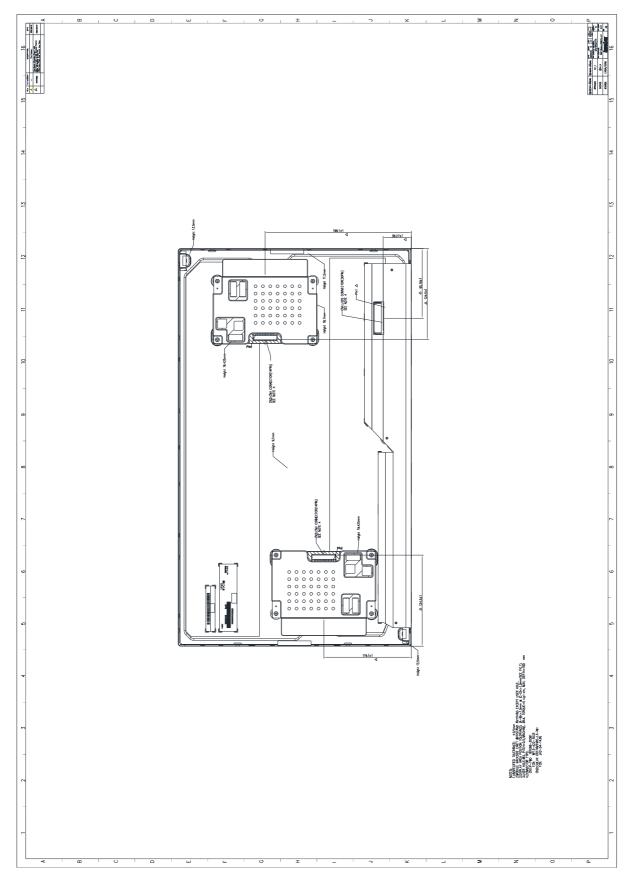
- (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
- (b) The polarizer surface should not come in contact with any other object.
- (c) It is recommended that they be stored in the container in which they were shipped.
- (d) Storage condition is guaranteed under packing conditions.
- (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.


11.3 OTHER PRECAUTIONS

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- (3) Abnormal condition just means conditions except normal condition.

PRODUCT SPECIFICATION

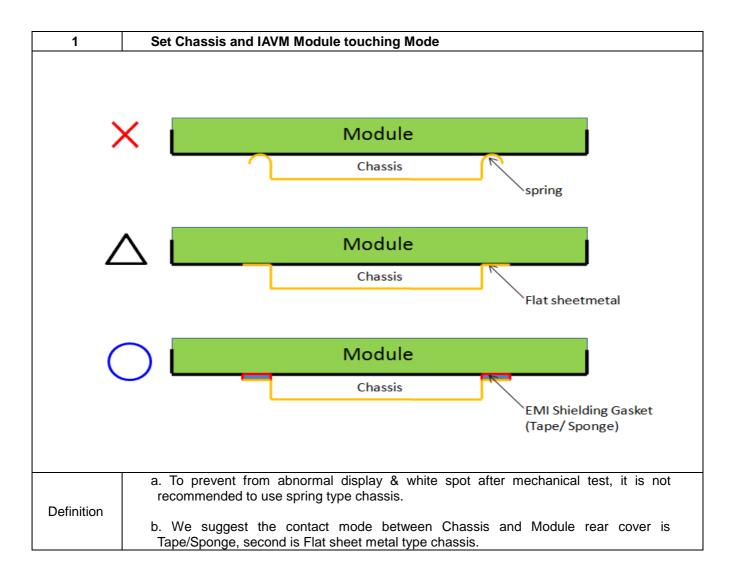
12. MECHANICAL CHARACTERISTICS

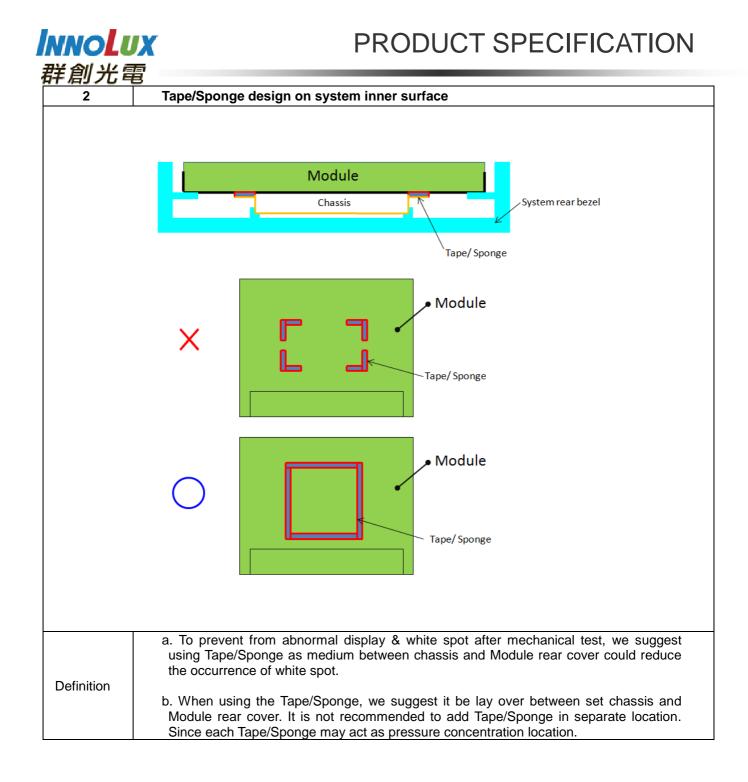


Version 2.0

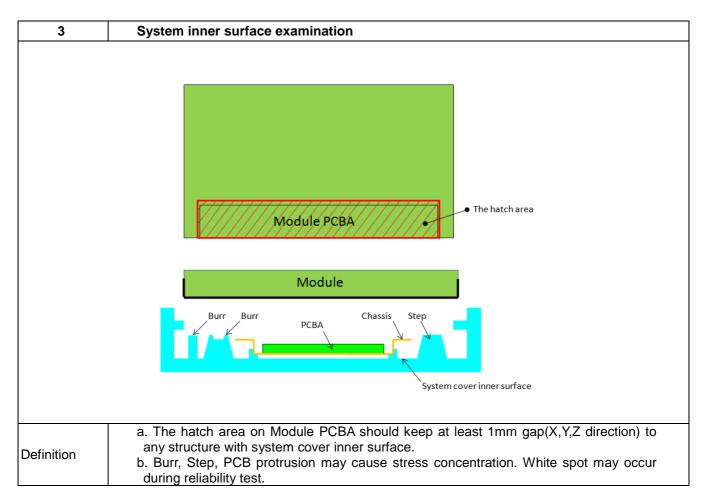
3 October 2022

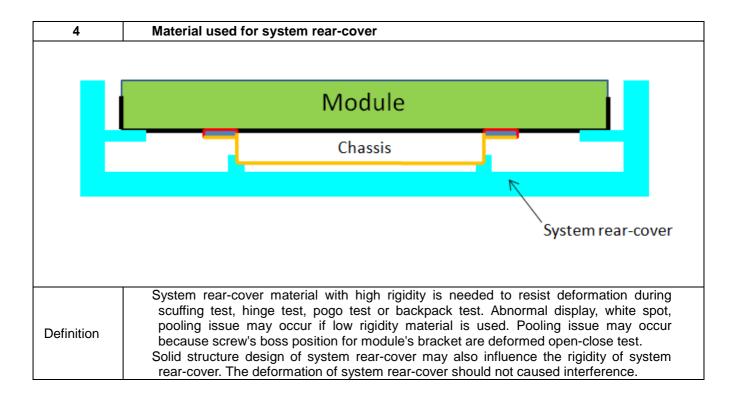
PRODUCT SPECIFICATION

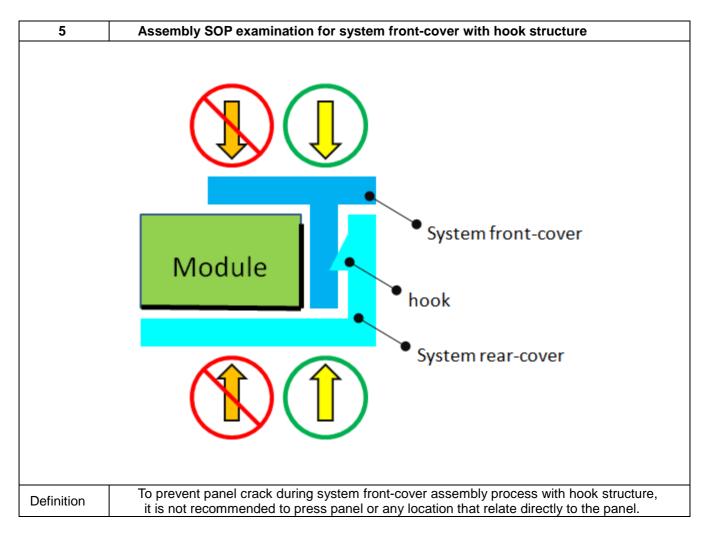


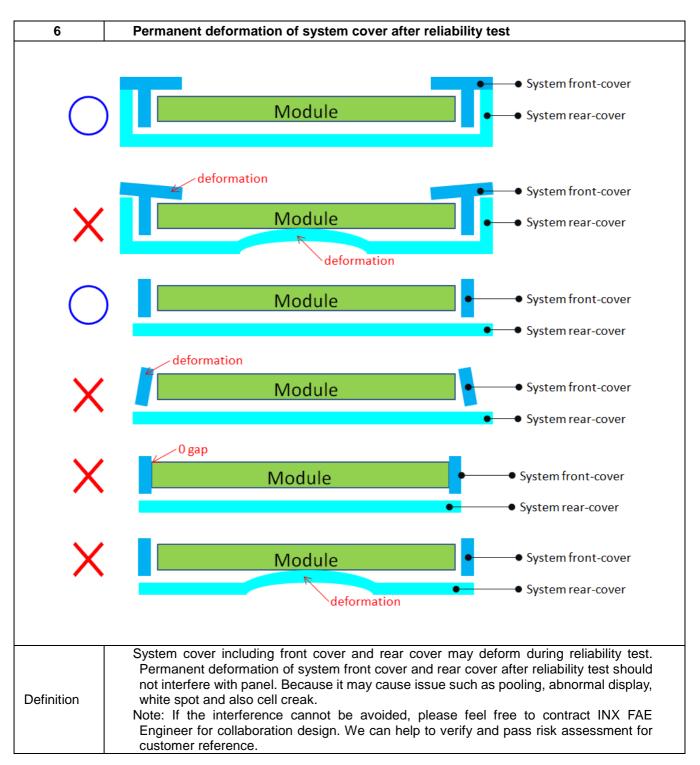

Version 2.0

30/39

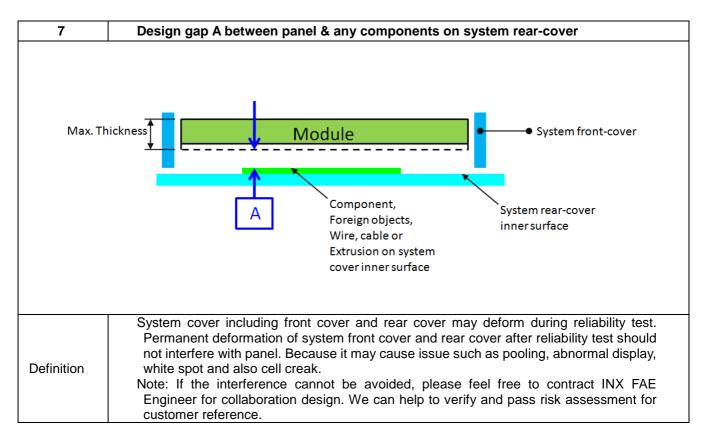


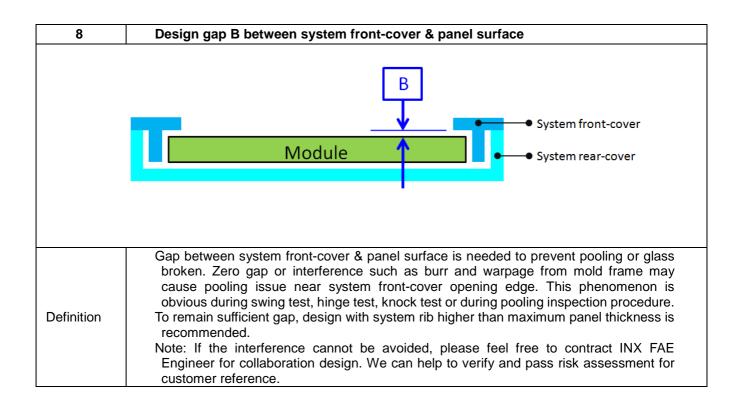

Appendix. SYSTEM COVER DESIGN NOTICE

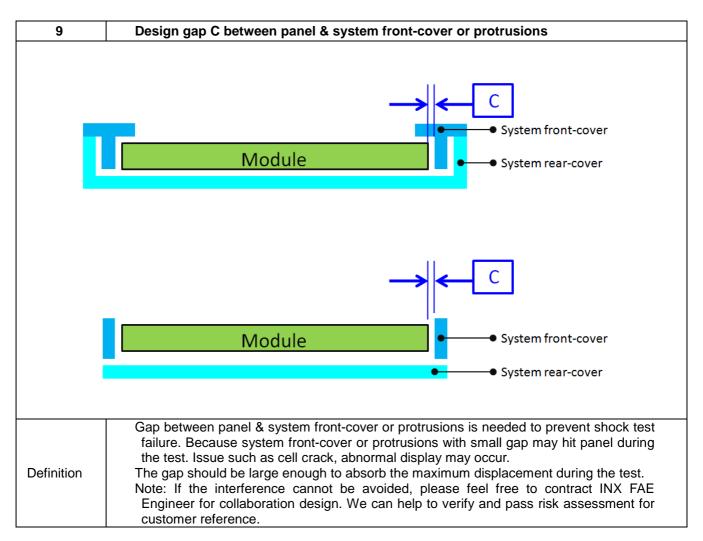


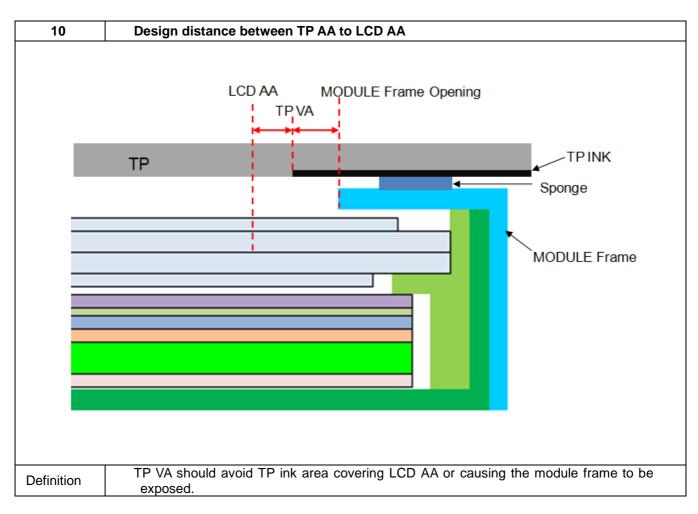


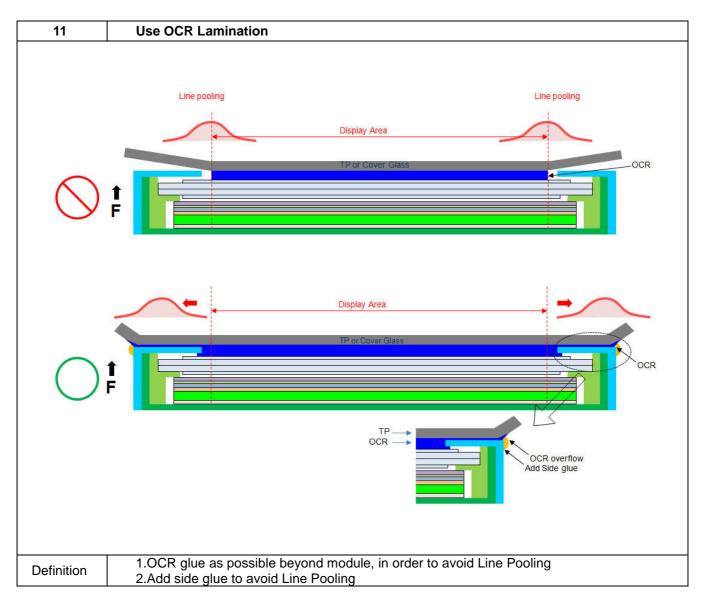
33 / 39











Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Fortec Group Members

DISTEC

A FORTEC GROUP MEMBER

FORTEC Elektronik AG Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894450-0 info@fortecag.de www.fortecag.de

Distec GmbH Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 info@distec.de www.distec.de

Distec GmbH Augsburger Str. 2b 82110 Germering

Phone: E-Mail:

Internet:

+49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: E-Mail: Internet: +41 44 7446111 info@altrac.ch www.altrac.ch

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: E-Mail: Internet: +44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 info@apollodisplays.com www.apollodisplays.com

Austria

