

Datasheet

Disea

NK !H\$, \$E M< !\$%

ÖÒË€Í Ë€FH

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

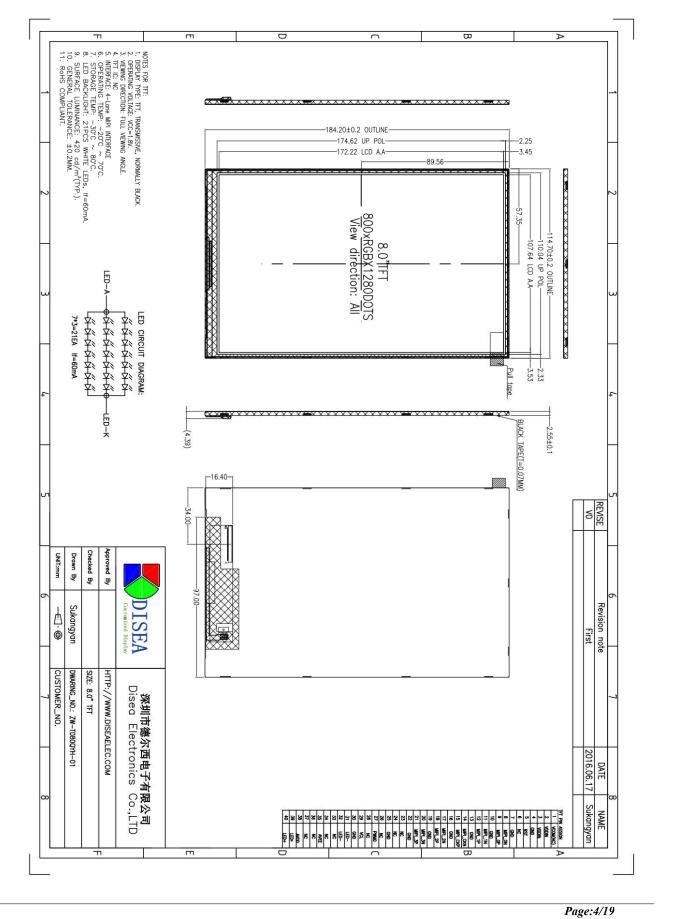
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DISEA Stomized Display	Electro	onics Co., LTD
	PRODUCT SPE		ATIONS
For Cu	stomer:	□ : APPROV	AL FOR SPECIFICATION
Custor	mer Model No	□ : APPROV	AL FOR SAMPLE
Modu ble of Cont	le No.: <u>ZW-T080QYH-01</u>	Date :_	2016-07-01
No.	Item		Page
1	Cover Sheet(Table of Contents)		
2	Revision Record		
3	General Specifications		
4	Outline Drawing		
5	Absolute Maximum Ratings		
6	Electrical Specifications		
7	Optical Characteristics		
8	Reliability Test Items and Criteria		
9	Precautions for Use of LCD Modules		
r Custom	er's Acceptance:	0	

Approved By Comment

PREPARED	CHECKED	VERIFIED BY QA DEPT	VERIFIED BY R&D DEPT
mma	john		Dmjiang

2. Revision Record

Date	Rev.No	Page	Revision Items	Prepared
2016-07-01	V0		The first release	ZHP
2017-09-26	V1		Update drawing	Stone
2018-08-01	V2		Update the format	mma


3. General Specifications

ZW-T080QYH-01 is a TFT-LCD module. It is composed of a TFT-LCD panel, driver IC, FPC, a back light unit. The 8.0" display area contains 800 x1280 pixels and can display up to 16.7M colors. This product accords with RoHS environmental criterion.

Item	Contents	Unit	Note
LCD Type	TFT/Transmissive/Normally White	-	
Display color	16.7M		
Viewing Direction	Full viewing angle	O'Clock	
Operating temperature	-10~+50	°C	
Storage temperature	-20~+60	°C	
Module size	114.7x184.2x2.55	mm	
Active Area(W×H)	107.64X172.22	mm	
Number of Dots	800×1280	dots	
TFT Controller	N/A	-	
Power Supply Voltage	1.8	V	
Backlight	21LEDs (white)	pcs	
Weight		g	
Interface	4Lanes-MIPI	-	

4. Outline. Drawing

5. Absolute Maximum Ratings(Ta=25 °C)

5.1 Electrical Absolute Maximum Ratings.(Vss=0V , Ta=25 $^{\circ}C$)

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	VDDIN	-0.3	5.5	V	
	AVDD	-0.3	6.6		1, 2
	AVEE	+0.3	-6.6	V	

Notes:

1. If the module is above these absolute maximum ratings. It may become permanently damaged. Using the module within the following electrical characteristic conditions are also exceeded, the module will malfunction and cause poor reliability.

5.2 Environmental Absolute Maximum Ratings.

Item	Stor	age	Operat	ting	Note
nem	MIN.	MAX.	MIN.	MAX.	NOLE
Ambient Temperature	-20 °C	60 ℃	-10°C	50 ℃	1,2
Humidity	-	-	-	-	3

- 1. The response time will become lower when operated at low temperature.
- 2. Background color changes slightly depending on ambient temperature.

The phenomenon is reversible.

3. Ta<=40 °С:85%RH MAX.

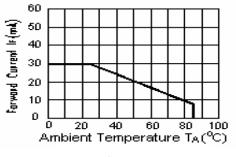
Ta>=40 C:Absolute humidity must be lower than the humidity of 85%RH at 40 C.

6. Electrical Specifications and Instruction Code

6.1 Electrical characteristics(Vss=0V ,Ta=25 °C)

Parameter		Symbol	Condition	Min	Тур	Max	Unit	Note
		VDDIN	Ta=25° ℃	1.7	1.8	1.9	V	
Power su	pply	AVDD	Ta=25 ℃	5.2	5.8	6.0	V	
		AVEE	Ta=25° ℃	-6.0	-5.8	-5.2	V	
Input	'H'	VIH	-	0.7V _{CC}	-	Vcc	V	
voltage	'L'	V _{IL}	-	0	-	0.3V _{CC}	V	
Current		I _{CC1}	Normal mode	-	-	-	mA	
Consump	otion	I _{CC2}	Sleep mode	-	-	-	mA	

6.2 LED backlight specification(VSS=0V ,Ta=25°C)


Item	Symbol	Condition	Min	Тур	Max	Unit	Note
Supply voltage	V _f	lf=60mA	19	21	23	V	
Uniformity	∆Вр	lf=60mA	75	-	-	%	
LED life time	-	lf=60mA	20k	30k	Hours		

Note:

1: VLED=VLED(+)-VLED(-).

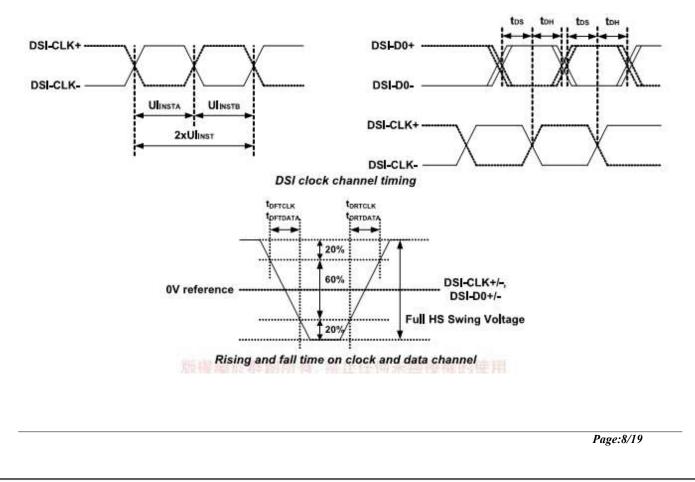
2:The current of LED is 20mA.

A LED drive in constant current mode is recommended.

ILED VS TEMP

6.3 Interface signals

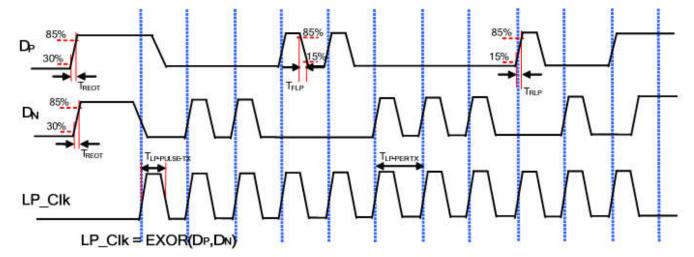
Pin No.	Symbol	I/O	Function
1	VCOM	Р	Common Voltage(-1.756 ± 0.3 V)
2-3	VDDIN	Р	A power supply for the analog power.
4	GND	Р	Ground.
5	RST	I	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied
6	NC	-	No connection
7	GND	Р	Ground.
8	MIPI-0N	I	MIPI-DSI Data differential signal input pins. (Data
9	MIPI-0P	I	MIPI-DSI Data differential signal input pins. (Data
10	GND	Р	Ground.
11	MIPI-1N	I	MIPI-DSI Data differential signal input pins. (Data
12	MIPI-1P	I	MIPI-DSI Data differential signal input pins. (Data
13	GND	Р	Ground.
14	MIPI-CLKN	I	MIPI-DSI CLOCK differential signal input pins.
15	MIPI-CLKP	I	MIPI-DSI CLOCK differential signal input pins.
16	GND	Р	Ground.
17	MIPI-2N	I	MIPI-DSI Data differential signal input pins. (Data
18	MIPI-2P	1	MIPI-DSI Data differential signal input pins. (Data
19	GND	Р	Ground.
20	MIPI-3N	I	MIPI-DSI Data differential signal input pins. (Data
21	MIPI-3P	I	MIPI-DSI Data differential signal input pins. (Data
22	GND	Р	Ground.
23-24	NC	_	No connection
25	GND	Р	Ground.
26	NC	-	No connection
27	PWM0	I	CABC PWM signal output.
28	NC	_	No connection
29	VCL	Р	Output voltage pin,use it to generate common voltage by a VR circuit (output voltage -2.5V)
30	GND	Р	Ground.
31-32	LED-	Р	LED back light(Cathode)
35	AVEE	Р	Analog supply negative voltage
36-37	NC	-	No connection
38	AVDD	Р	Analog supply positive voltage
39-40	LED+	Р	LED back light(Anode)


6.4 MIPI signal Timing Characteristics

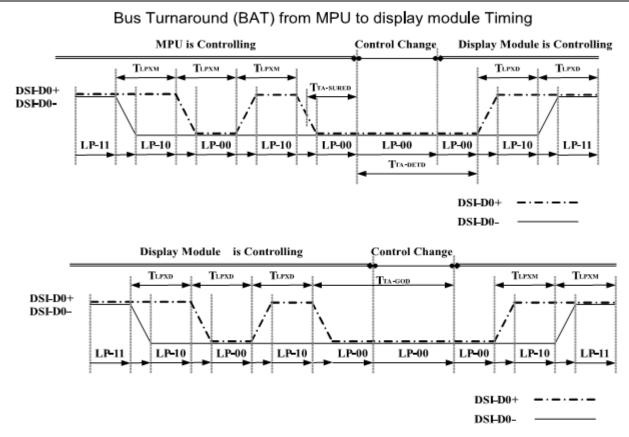
6.4.1 High Speed Mode

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
			4	-	8	ns	4 Lane (Note 2)
DSI-CLK+/-	2xUINST	Double UI instantaneous	3	-	8	ns	3 Lane (Note 2)
			2.352	-	8	ns	2 Lane (Note 3)
	UIINSTA	Ul instantaneous halfs	2	-	4	ns	4 Lane (Note 2)
DSI-CLK+/-	UIINSTR	(UI = UIINSTA =	1.5	-	4	ns	3 Lane (Note 2)
	OINOID	UIINSTB)	1.176	-	4	ns	2 Lane (Note 3)
DSI-Dn+/-	tDS	Data to clock setup time	0.15x Ul	-	-	ps	
DSI-Dn+/-	tDH	Data to clock hold time	0.15x UI	-	-	ps	
DSI-CLK+/-	tDRTCLK	Differential rise time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	tDRTDATA	Differential rise time for data	150	-	0.3xUI	ps	
DSI-CLK+/-	tDFTCLK	Differential fall time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	tDFTDATA	Differential fall time for data	150	-	0.3xUI	ps	

Note 1) Dn = D0, D1, D2 and D3.


- Note 2) Maximum total bit rate is 2Gbps for 24-bit data format, 1.5Gbps for 18-bit data format and 1.33Gbps for 16-bit data format in 3 lanes or 4 lanes application which support to 800RGBx 1280 resolution.
- Note 3) Maximum total bit rate is 1.7Gbps for 24-bit data format, 1.275Gbps for 18-bit data format and 1.13Gbps for 16-bit data format in 2 lanes application which support to 720RGBx1280 resolution.

6.4.2 LP Transmission

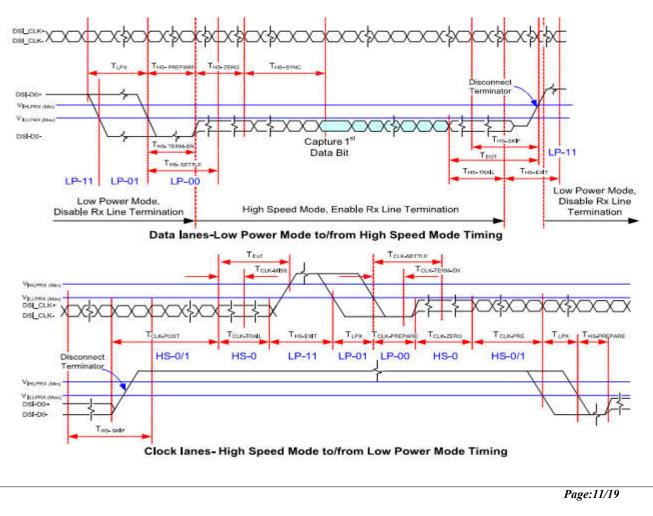

Devenueter	Values			es Unit		Domork
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
DSI CLK frequency(LP)	FDSICLK_LP	8:		10	MHz	
DSI CLK Cycle Time(LP)	t _{CLKC_LP}	100		41 14	ns	
DSI Data Transfer Rate(LP)	t _{DSIR_LP}			10	Mbps	
15%-85% rise time and fall time	T _{RLP} / T _{FLP}	85 4 5		35	ns	
30%-85% rise time(from HS to LP)	T _{REOT}	-	1	35	ns	
Pulse width of the LP exclusive-OR clock	t _{LP-PULSE-TX}	50	65	1990	ns	
Period of the LP exclusive-OR clock	t _{LP-PRE-TX}	100	130	1.75	ns	

6.4.3 Low Power Mode

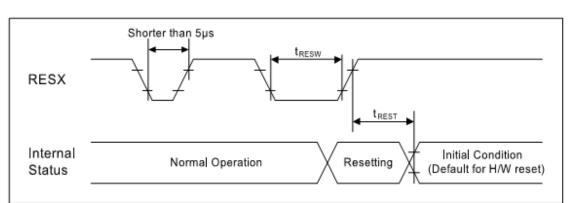
Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+ /-	TLPXM	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU (Display Module	50	-	75	ns	Input
DSI-D0+ /-	TLPXD	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module (MPU	50	-	75	ns	Output
DSI-D0+ /-	TTA-SU RED	Time-out before the MPU start driving	TLPX D	125	2xTL PXD	ns	Output
DSI-D0+ /-	TTA-GE TD	Time to drive LP-00 by display module	5xTL PXD		<u>~</u>	ns	Input
DSI-D0+ /-	TTA-GO D	Time to drive LP-00 after turnaround request - MPU	4xTL PXD		-	ns	Output

Bus Turnaround (BAT) from display module to MPU Timing

6.4.4 DSI Bursts

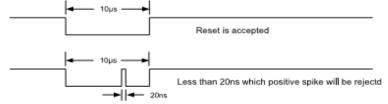

Signal	Symbol	Parameter	MIN	ТҮР	МАХ	Unit	Descripti on	
	Low Power Mode to High Speed Mode Timing							
DSI-Dn+/-	I-Dn+/- TLPX Length of any low power state period		50	-	-	ns	Input	
DSI-Dn+/-	SI-Dn+/- THS-PRE PARE PARE Time to drive LP-00 to prepare for HS transmission		40+4xUl	-	85+6xUI	ns	Input	
DSI-Dn+/-		receiver line termination measured from when Dn	-	-	35+4xUl	ns	Input	
	High Speed Mode to Low Power Mode Timing							
DSI-Dn+/-	THS-SKIP	Time-out at display module to ignore transition period of EoT	40	-	55+4xU	ns	Input	
DSI-Dn+/- THS-EXIT Time to drive LP-11 after HS burst		100	-	-	ns	Input		
DSI-Dn+/- L THS-TRAI L THS-TRAI DSI-Dn+/-		60+4xUl	-	-	ns	Input		
High Speed Mode to/from Low Power Mode Timing								
DSI-CLK+/- TCLK-PO continue sending after the last asso		Time that the MPU shall continue sending HS clock after the last associated data lane has transition to	60+52xUI	-	-	ns	Input	

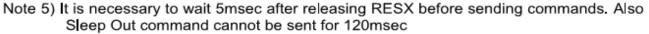
		LP mode					-
DSI-CLK+/-	Time to drive HS		60	_	-	ns	Input
DSI-CLK+/-	THS-EXIT	Time to drive LP-11 after HS burst	100	-	-	ns	Input
DSI-CLK+/-	LK+/- TCLK-PR EPARE Time to drive LP-00 to prepare for HS transmission		38	-	95	ns	Input
DSI-CLK+/-	TCLK-TE RM-EN Time-out at clock lane display module to enable HS transmission		-	-	38	ns	Input
DSI-CLK+/-	TCLK-PR EPARE+ TCLK-ZE RO	Minimum lead HS-0 drive period before starting clock	300	-	-	ns	Input
DSI-CLK+/-	TCLK-PR E	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8xU I	-	-	ns	Input


Note 1) Dn = D0, D1, D2 and D3.

Note 2) Two HS transmission can be sent with a break as short as THS-EXIT from each other in continuous clock mode. In discontinuous mode, the break is longer which account TCLK-POS, TCLK-TRAIL and THS-EXIT, before activity in clock and data lanes again.

6.4.5 Reset Input Timing


Reset input timing


(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 t						Ta = -30 to 70°C	
Signal	Symbol	Parameter	MIN	ТҮР	MAX	Unit	Description
	tresw	Reset "L" pulse width (Note 1)	10	-	-	μs	
RESX	trest Rese 2)		-	-	5	ms	When reset applied during Sleep In Mode
		Reset complete time (Note 2)	_	-	120	ms	When reset applied during Sleep Out Mode and Note 5

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

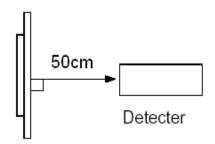
RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.
- Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Page:12/19

7. Optical Characteristics

Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Note
Brightness	Вр		<i>θ</i> =0°	350	420	-	Cd/m ²	1
Uniformity	⊿Вр		Ф =0 °	75	-	-	%	1,2
	3:00		Cr≥10	70	80	-	Deg	3
Viewing	6:00			70	80	-		
Angle	9:00			70	80	-		
	1:	2:00		70	80	-		
Contrast Ratio	Cr		<i>θ</i> =0°	600	800	-	-	4
Response	T _r T _f		Φ=0°	-	25		ms ms	5
Time				-	25			
	W	x		-0.05	0.31	+0.05	-	-
		У			0.33		-	
	R	x	<i>θ</i> =0° Φ=0°		-		-	
Color of CIE	R	У			-		-	
Coordinate	G B	x			-		-	1,6
		у			-		-	
		х			-		-	
	D	У			-		-	
NTSC Ratio	S			50	60	-	%	

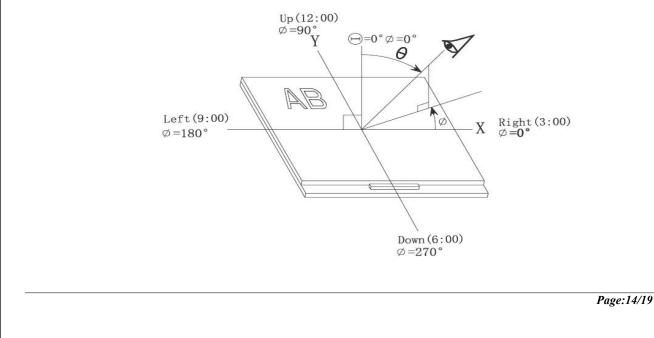

Note: The parameter is slightly changed by temperature, driving voltage and materiel

Note 1: The data are measured after LEDs are turned on for 5 minutes. LCM displays full white. The brightness is the average value of 9 measured spots. Measurement equipment BM-7 (Φ5mm) Measuring condition:

- Measuring surroundings: Dark room.
- Measuring temperature: Ta=25 C.
- Adjust operating voltage to get optimum contrast at the center of the display.

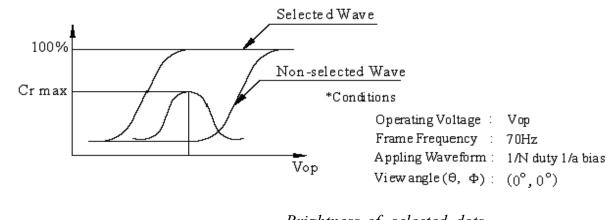
Measured value at the center point of LCD panel after more than 5 minutes while backlight turning on.

Note 2: The luminance uniformity is calculated by using following formula.

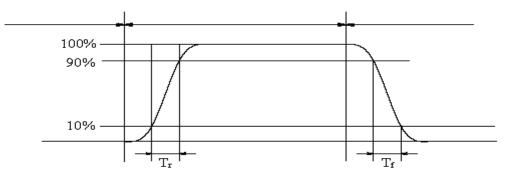

∠Bp = Bp (Min.) / Bp (Max.)×100 (%)

Bp (Max.) = Maximum brightness in 9 measured spots

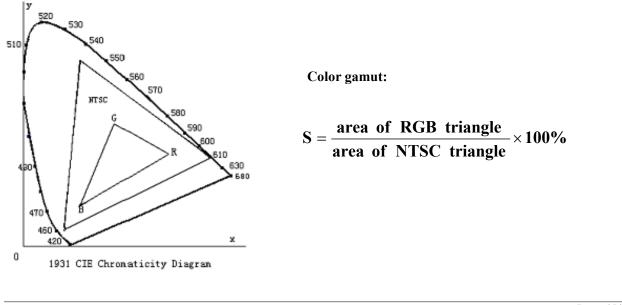
Bp (*Min.*) = *Minimum brightness in 9 measured spots.*



Note 3: The definition of viewing angle: Refer to the graph below marked by ϑ and Φ


Note 4: Definition of contrast ratio.(Test LCD using DMS501)

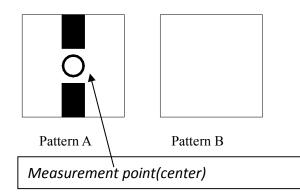
Contrast ratio(Cr) = $\frac{Brightness of selected dots}{Brightness of non-selected dots}$


Note 5: Definition of Response time. (Test LCD using DMS501):

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes.Refer to figure as below.

The definition of response time

Note 6: Definition of Color of CIE Coordinate and NTSC Ratio.



Page:15/19

Note 7: Definition of cross talk.

Cross talk ratio(%)=|pattern A Brightness-pattern B Brightness|/pattern A Brightness*100

Electric volume value=3F+/-3Hex

8. Reliability Test Items and Criteria

No	Test Item	Test condition	Criterion		
1	High Temperature Storage	60℃±2℃ 96H Restore 2H at 25℃ Power off			
2	Low Temperature Storage	-20℃±2℃ 96H Restore 2H at 25℃ Power off			
3	High Temperature Operation	50℃±2℃ 96H Restore 2H at 25℃ Power on	1. After testing, cosmetic and electrical defects should not		
4	Low Temperature Operation	-10℃±2℃ 96H Restore 4H at 25℃ Power on	happen. 2. Total current consumption should not be more than twice		
5	High Temperature/Humidity Operation	40℃±2℃ 90%RH 96H Power on	of initial value.		
6	Temperature Cycle	-20°C →60°C 30min 5min 30min after 5 cycle, Restore 2H at 25°C Power off			
7	Vibration Test	10Hz~150Hz, 100m/s², 120min	Not allowed cosmetic		
8	Shock Test	Half- sine wave,300m/s ² ,11ms	and electrical defects.		

Note: Operation: Supply 1.8V for logic system.

The inspection terms after reliability test, as below

ITEM	Inspection
Contrast	CR>50%
IDD	IDD<200%
Brightness	Brightness>60%
Color Tone	Color Tone+/-0,05

9. Precautions for Use of LCD Modules

9.1 Handling Precautions

- 9.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 9.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 9.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 9.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 9.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

— Isopropyl alcohol — Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water Ketone Aromatic solvents
- 9.1.6 Do not attempt to disassemble the LCD Module.
- 9.1.7 If the logic circuit power is off, do not apply the input signals.
- 9.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - a. Be sure to ground the body when handling the LCD Modules.
 - b. Tools required for assembly, such as soldering irons, must be properly ground.
 - *c.* To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - *d.* The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

9.2 Storage precautions

- 9.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 9.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0 $^\circ\!\!C$ \sim 40 $^\circ\!\!C$

Relatively humidity: ≤80%

9.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

9.3 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

<u>END</u>

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

FORTEC Elektronik AG Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet:

+49 89 894450-0 info@fortecag.de www.fortecad.de

Fortec Group Members

Germany

Distec GmbH Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 info@distec.de www.distec.de

Distec GmbH Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet:

+49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: E-Mail: Internet:

+41 44 7446111 info@altrac.ch www.altrac.ch

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: E-Mail: Internet:

+44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Ravnor Avenue. Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet:

+1 631 5804360 info@apollodisplays.com www.apollodisplays.com