

Manual

ADVANTECH

AIMB-786

ATX Motherboard for

8th Generation Intel® Core™ i7/i5/i3/Pentium®/Celeron® LGA1151 Processor with Triple Display, DDR4, USB 3.1, SATA 3.0

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

User Manual

AIMB-786

LGA1151 Intel[®] CoreTM i7/i5/i3 ATX with Triple Display, Dual GbE LAN, SATA 3.0, USB 3.1, & DDR4

Copyright

The documentation and the software included with this product are copyrighted 2020 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

Acknowledgements

AMI is a trademark of American Megatrends Inc.

IBM and PC are trademarks of International Business Machines Corporation.

Intel® Core™, Intel® Core™ 2 Quad, Pentium® Dual Core and Celeron® are trademarks of Intel® Corporation.

All other product names or trademarks are properties of their respective owners.

Part No. 2001078601 Printed in China Edition 2 May 2020

A Message to the Customer

Advantech Customer Service

Each and every Advantech product is built to the most exacting specifications to ensure reliable performance in the harsh and demanding conditions typical of industrial environments. Whether your new Advantech equipment is destined for the laboratory or the factory floor, you can be assured that your product will provide the reliability and ease of operation for which the name Advantech has come to be known.

Your satisfaction is our primary concern. Here is a guide to Advantech's customer services. To ensure you get the full benefit of our services, please follow the instructions below carefully.

Technical Support

We want you to get the maximum performance from your products. So if you run into technical difficulties, we are here to help. For the most frequently asked questions, you can easily find answers in your product documentation. These answers are normally a lot more detailed than the ones we can give over the phone.

So please consult this manual first. If you still cannot find the answer, gather all the information or questions that apply to your problem, and with the product close at hand, call your dealer. Our dealers are well trained and ready to give you the support you need to get the most from your Advantech products. In fact, most problems reported are minor and are able to be easily solved over the phone.

In addition, free technical support is available from Advantech engineers every business day. We are always ready to give advice on application requirements or specific information on the installation and operation of any of our products.

Declaration of Conformity

FCC

This device complies with the requirements in part 15 of the FCC rules:

Operation is subject to the following two conditions:

- This device may not cause harmful interference
- This device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this device in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his/her own expense. The user is advised that any equipment changes or modifications not expressly approved by the party responsible for compliance would void the compliance to FCC regulations and therefore, the user's authority to operate the equipment.

Caution! There is a danger of a new battery exploding if it is incorrectly installed. Do not attempt to recharge, force open, or heat the battery. Replace the battery only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For out-of-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any on-screen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- If your product is diagnosed as defective, obtain an return merchandise authorization (RMA) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Initial Inspection

Before you begin installing your motherboard, please make sure that the following materials have been shipped:

- 1 AIMB-786 User Manual
- 2 Serial ATA HDD data cables
- 2 Serial ATA HDD power cables
- 1 I/O port bracket

If any of these items are missing or damaged, contact your distributor or sales representative immediately. We have carefully inspected the AIMB-786 mechanically and electrically before shipment. It should be free of marks and scratches and in perfect working order upon receipt. As you unpack the AIMB-786, check it for signs of shipping damage. (For example, damaged box, scratches, dents, etc.) If it is damaged or it fails to meet the specifications, notify our service department or your local sales representative immediately. Also notify the carrier. Retain the shipping carton and packing material for inspection by the carrier. After inspection, we will make arrangements to repair or replace the unit.

Contents

Cnapter	1	Hardware Configuration1
	1.1	Introduction
	1.2	Features2
	1.3	Specifications
		1.3.1 System
		1.3.2 Memory
		1.3.3 Input/Output
		1.3.4 Graphics
		1.3.5 Ethernet LAN
		1.3.6 Industrial Features
		1.3.7 Mechanical and Environmental Specifications
	1.4	Jumpers and Connectors
	1	Table 1.1: Jumpers
		Table 1.2: Connectors
	1.5	Board Layout: Jumper and Connector Locations
	1.0	Figure 1.1 Jumper and Connector Locations
		Figure 1.2 I/O connectors
	1.6	Block Diagram
	1.0	Figure 1.3 Block Diagram
	1.7	Safety Precautions
	1.7	Jumper Settings
	1.0	1.8.1 How to set jumpers
		1.8.2 CMOS clear (JCMOS1) and Intel® ME update (JME1)
		Table 1.3: CMOS clear (JCMOS1) and Intel® ME update (JME1)
		8
		1.8.3 Watchdog timer output and OBS alarm (JWDT1+JOBS1)9
		Table 1.4: Watchdog timer output and OBS alarm (JWDT1+JOBS1)9
		1.8.4 ATX/AT mode selection (PSON1)
		Table 1.5: ATX/AT mode selection (PSON1)9
		1.8.5 USB power source switch between +5V and +5V_DUAL for rear USB ports (JUSB_1) and onboard USB ports (JUSB_2)
		Table 1.6: USB power source switch between +5V and +5V_DU-
		AL for rear USB ports (JUSB_1) and on board USB
		ports (JUSB_2)10
		1.8.6 PCI clock selection (JPCICLK1) 10
		Table 1.7: PCI clock selection (JPCICLK1)
		1.8.7 COM3 RS-232/422/485 jumper setting (JSETCOM3)
		Table 1.8: COM3 RS-232/422/485 jumper setting (JSETCOM3)
		1.8.8 COM3 RS-422/485 termination resistor (JT1, JR1)11
		Table 1.9: COM3 RS-422/485 termination resistor (JT1, JR1) 11
		1.8.9 VGA dummy load setting (JFV1)
		Table 1.10: VGA dummy load setting (JFV1)12
	1.9	System Memory
	1.10	Memory Installation Procedures
Chapter	2	Connecting Peripherals13
		•
	2.1	Introduction
	2.2	Parallel Port (LPT1)
	2.3	LAN Port (LAN1, LAN2) and USB Port (USB3C1, USB3C2, USB3H1,
	2.4	USB2C1, USB2A1, USB2H2)
	2.4	VGA Connector (VGA1), DVI-D Connector (DVI1), and DisplayPort

	2.5	Connector (DP1)	
	2.5 2.6	Serial Port (COM1 ~ COM6) External Keyboard and Mouse Connector (KBMS1)	
	2.0	CPU and System Fan Connector (CPUFAN1, SYSFAN1 ~ SYSFAN3).	
	2.8	Front Panel Connector (JFP1, JFP2, JFP3)	
	2.0	2.8.1 Power LED and Keyboard Lock (JFP3)	
		Table 2.1: PS/2 or ATX power supply LED status	
		2.8.2 External Speaker (JFP2 pins 1, 4, 7, 10)	
		2.8.3 HDD LED Connector (JFP2 pins 2, 5)	
		2.8.4 SMBus Connector (JFP2 pins 8, 11)	. 19
		2.8.5 ATX Soft Power Switch (JFP1 pins 3, 6)	
		2.8.6 Reset Connector (JFP1 pins 9, 12)	
	2.9	Line Out, Mic In Connector (AUDIO1_AUDIO2)	
	2.10	8-pin Alarm Board Connector (VOLT1)	
	2.11 2.12	Case Open Connector (JCASE1)	. 21
	2.12	Front Panel LAN Indicator Connector (LANLED1)	
	2.13	Serial ATA Interface (SATA1 ~ SATA5)	
	2.13	PCI Slot (PCI1, PCI2)	
	2.15	PCIe x16 Expansion Slot (PCIE1)	
	2.16	PCIe x4 Expansion Slot (PCIE2 ~ PCIE5)	
	2.17	Auxiliary 4-pin Power Connector (ATX12V1)	
	2.18	SPI Flash Connector (SPI_CN1)	
	2.19	Low Pin Count Connector (LPC1)	
		Table 2.3: Advantech LPC Module List	
	2.20	GPIO Connector (GPIO1)	
	2.21	SMBus Connector (SMBUS1)	. 26
Chapter	3	BIOS Operation	27
	3.1	Introduction	. 28
		Figure 3.1 Main setup screen	. 28
	3.2	Entering BIOS Setup	
		3.2.1 Main Menu	
		Figure 3.2 Main setup screen	
		3.2.2 Advanced BIOS Features Setup	
		Figure 3.3 Advanced BIOS features setup screen	
		Figure 3.5 CPU Configuration	
		Figure 3.6 Power & Performance	
		Figure 3.7 CPU - Power Management Control	
		Figure 3.8 PCH-FW Configuration	
		Figure 3.9 AMT Configuration	
		Figure 3.10 CIRA Configuration	
		Figure 3.11 ASF Configuration	. 36
		Figure 3.12 Secure Erase Configuration	
		Figure 3.13 OEM Flags Settings	
		Figure 3.14 MEBx Resolution Settings	
		Figure 3.15 Firmware Update Configuration	
		Figure 2 16 IDM Settings	. 40
		Figure 3.16 TPM Settings	
		Figure 3.17 ACPI Settings	. 41
		Figure 3.17 ACPI SettingsFigure 3.18 SMART Settings	. 41 . 42
		Figure 3.17 ACPI SettingsFigure 3.18 SMART SettingsFigure 3.19 Super IO Configuration	. 41 . 42 . 43
		Figure 3.17 ACPI SettingsFigure 3.18 SMART SettingsFigure 3.19 Super IO ConfigurationFigure 3.20 Serial Port 1 Configuration	. 41 . 42 . 43 . 43
		Figure 3.17 ACPI Settings	. 41 . 42 . 43 . 43
		Figure 3.17 ACPI Settings	. 41 . 42 . 43 . 43 . 44
		Figure 3.17 ACPI Settings	. 41 . 42 . 43 . 43 . 44 . 44

			rigure 3.26 Seriai Port 4 Corniguration	
			Figure 3.27 Serial Port 5 Configuration	
			Figure 3.28 Serial Port 6 Configuration	
			Figure 3.29 S5 RTC Wake Settings	
			Figure 3.30 Serial Port Console Redirection	
			Figure 3.31 Intel® TXT Information	
			Figure 3.32 USB Configuration	
			Figure 3.33 CSM Configuration	
			Figure 3.34 Network Stack Configuration	
		3.2.3	Chipset	
			Figure 3.35 Chipset	
			Figure 3.36 System Agent (SA) Configuration	
			Figure 3.37 Memory Configuration	
			Figure 3.38 Graphics Configuration	
			Figure 3.39 PEG Port Configuration	
			Figure 3.40 PEG Port Feature Configuration	
			Figure 3.41 PCH-IO Configuration	
			Figure 3.42 PCI Express Configuration	
			Figure 3.43 PCI Express Root Port	
			Figure 3.44 SATA and RST Configuration	
			Figure 3.45 USB Configuration	64
			Figure 3.46 Security Configuration	65
			Figure 3.47 HD Audio Configuration	66
		3.2.4	Security	67
			Figure 3.48 Security	67
		3.2.5	Boot	
			Figure 3.49 Boot	
		3.2.6	Save & Exit	
			Figure 3.50 Save & Exit	
	4.1 4.2 4.3	Introdu	you beginuction ws Driver Setup	72
Chapter	5	Inte	egrated Graphic Device Setup	73
	- 4			7.4
	5.1		uction	
	5.2	vvindo	ws Driver Setup	74
Chapter	6	Inte	IR ME	75
onaptor				
	6.1	Introdu	uction	76
	6.2		ation	
	0.2	motane		
	_			
Chapter	7	LAI	N Configuration	77
•			•	
	7.1	Introdu	uction	78
	7.2	Featur	es	78
	7.3		ation	
	7.4	Windo	ws Driver Setup	78
Chantar	0	CV.	TA DAID Cotus	70
Chapter	8	ЭA	TA RAID Setup	/9
	8.1		uction	
		المصموا ا	Intion	

	8.2	SATA RAID Driver and Utility Setup	80
Chapter	9	HD Audio	. 81
	9.1	Introduction	82
	9.2	Installation	
Appendi x	хА	Programming the Watchdog Timer	. 83
	A.1	Watchdog timer overview	84
	A.2	Programming the Watchdog Timer	
	7 1.2	Table A.1: Watchdog timer registers	
		A.2.1 Example Programs	
Appendi	хВ	I/O Pin Assignments	. 91
		•	
	B.1	Parallel Port (LPT1)	
	Б.О	Table B.1: Parallel Port (LPT1)	
	B.2	LAN Port and USB 3.1 Port (LAN1_USB3C1, LAN2_USB3C2)	
		Table B.2: LAN Port (LAN1, LAN2) Table B.3: USB 3.1 Port (USB3C1, USB3C2)	
	D 2		
	B.3	USB 2.0 Port (USB2C1, USB2A1)	ყა იი
	D 4	Table B.4: USB 2.0 Port (USB2C1, USB2A1)	
	B.4	USB 3.1 Header (USB3H1)	
	D. E.	Table B.5: USB 3.1 Header (USB3H1)	
	B.5	USB 2.0 Header (USB2H2)	
	D.G	Table B.6: USB 2.0 Header (USB2H2)	
	B.6	VGA Connector (VGA1)	
	D 7	Table B.7: VGA Connector (VGA1)	
	B.7	DVI-D Connector (DVI1)	
	D 0		
	B.8	DisplayPort Connector (DP1)	
	ВΛ	Table B.9: DisplayPort Connector (DP1)	
	B.9	RS-232 and COM3 Interface (COM1 ~ COM6)	
		Table B.10: RS-232 DB-9 Connector (COM1)	
		Table B.11: RS-232 Header (COM2, COM4 ~ COM6)	
	D 40	Table B.12: RS-232/422/485 Header (COM3)	
	B.10	External Keyboard and Mouse Connector (KBMS1)	
	B.11	Table B.13:External Keyboard and Mouse Connector (KBMS CPU and System Fan Power Connector (CPUFAN1, SYSFAN1 ~ SYSFAN3)	•
		Table B.14: CPU and System Fan Power Connector (CPUF) SYSFAN1 ~ SYSFAN3)97	
	B.12	Power LED and Keyboard Lock (JFP3)	
		Table B.15: Power LED and Keyboard Lock (JFP3)	
	B.13	External Speaker Connector (JFP2)	
		Table B.16: External Speaker Connector (JFP2)	
	B.14	HDD LED Connector (JFP2)	
		Table B.17: HDD LED Connector (JFP2)	
	B.15	SMBus Connector (JFP2)	
	5 45	Table B.18: SMBus Connector (JFP2)	
	B.16	ATX Soft Power Switch (JFP1)	
		Table B.19: ATX Soft Power Switch (JFP1)	
	B.17	Reset Connector (JFP1)	
	5 45	Table B.20: Reset Connector (JFP1)	
	B.18	8-pin Alarm Board Connector (VOLT1)	
	D 40	Table B.21: 8-pin Alarm Board Connector (VOLT1)	99
	R 10	Case Open Connector (ICASE1)	OO

	Table B.22: Case Open Connector (JCASE1)	99
B.20	Front Panel LAN Indicator Connector (LANLED1)	100
	Table B.23: Front Panel LAN Indicator Connector (LANLED1)	100
B.21	SPI Flash Connector (SPI_CN1)	101
	Table B.24: SPI Flash Connector (SPI_CN1)	101
B.22	Low Pin Count Connector (LPC1)	101
	Table B.25: Low Pin Count Connector (LPC1)	101
B.23	GPIO Connector (GPIO1)	101
	Table B.26: GPIO Connector (GPIO1)	101
B.24	SMBus Connector (SMBUS1)	102
	Table B.27: SMBus Connector (SMBUS1)	102
B.25	Front Panel Audio Connector (FPAUD1)	102
	Table B.28: Front Panel Audio Connector (FPAUD1)	102
B.26	Watchdog Timer Output and HW Monitor Alarm (JWDT1+JOBS1)	103
	Table B.29: Watchdog Timer Output and HW Monitor Alarm	
	(JWDT1+JOBS1)103	

Chapter

Hardware Configuration

1.1 Introduction

AIMB-786 motherboard is the most advanced Intel® Q370 board for industrial applications that require high-performance computing. The motherboard supports 8th/9th generation Intel® Core™ i7/i5/i3 processors and DDR4 2400/2666 memory up to 128 GB. AIMB-786 provides cost-effective integrated graphics with 1 GB max shared memory when 2 GB or above system memory is installed.

AIMB-786 is equipped with one PCIe x16 (Gen3), four PCIe x4 (Gen3), and two PCI slots. Triple display interfaces are provided to allow users to connect monitors to the on-board VGA, DVI-D, and DP ports at the same time. In addition, the AIMB-786 has dual Gigabit Ethernet LAN via dedicated PCIe x1 bus, which offers bandwidth of up to 500 MB/s, eliminating network bottlenecks. High reliability and outstanding performance make the AIMB-786 the ideal platform for industrial networking applications.

By using the Intel® Q370 chipset, the AIMB-786 offers a variety of features such as five on-board SATA 3.0 interfaces (bandwidth = 600 MB/s) with software RAID (0, 1, 5, 10), two USB 3.1 Gen 2 ports, four USB 3.1 Gen 1 ports, seven USB 2.0 ports, and HD Audio. These powerful I/O capabilities ensure even more reliable data storage capabilities and high-speed I/O peripheral connectivity.

The AIMB-786 also adopts Advantech's unique patented Sleep Mode Control Circuit for AT Power Mode. With all the excellent features and outstanding performance, the AIMB-786 is the ideal platform for today's industrial applications.

1.2 Features

- PCle architecture: 1 PCle x16 slot, 4 PCle x4 slots.
- High performance I/O capability: Dual Gigabit LAN via PCle x1 bus, 2 x PCl 32-bit/33MHz PCl slots, 5 x SATA 3.0 (software RAID 0, 1, 5, 10), 2 x USB 3.1 Gen 2, 4 x USB 3.1 Gen 1, 7 x USB 2.0.
- Standard ATX form factor with industrial features: AIMB-786 provides industrial features like long product life, reliable operation under wide temperature range, watchdog timer functions, and more.
- Supports DDR4 2400/2666 up to 128 GB: DDR4 provides up to 50 percent increased performance and bandwidth while saving up to 40 percent power.
- **SUSI API:** AIMB-786 supports SUSI 4.0 API which helps customers to develop their own remote management programs under Windows 10.

1.3 Specifications

1.3.1 System

- CPU: LGA1151 socket supporting 8th/9th generation Intel® Core™ i7/i5/i3/Pentium/Celeron processor.
- Cache: Please refer to CPU specification for detailed information.
- BIOS: AMI SPI BIOS (256 Mbit).
- System Chipset: Intel® Q370 PCH.
- SATA Hard Disk Drive Interface: Five SATA 3.0 with software RAID 0. 1. 5. 10.

Note!

1. Intel 8th/9th generation processors only support Windows 10 (64-bit).

2. BIOS version V2.XX can support both 8th and 9th generation processors while BIOS version V1.XX can support only 8th generation processors.

1.3.2 Memory

■ RAM: Up to 128 GB in four 288-pin DIMM sockets supporting dual-channel DDR4 2400/2666 SDRAM. AIMB-786 supports non-ECC unbuffered DIMMs and does not support any memory configuration that mixes non-ECC with ECC unbuffered DIMMs.

1.3.3 Input/Output

- PCle slot: 1 x PCle x16 expansion slot, 4 PCle x4 expansion slots.
- PCI bus: 2 x PCI slots, 32-bit, 33 MHz PCI 2.2 compliant.
- Enhanced parallel port: One on-board parallel port, which supports SPP/EPP/ ECP mode. Standard DB-25 female connector cable is an optional accessory.
- **Serial port:** Six serial ports. One DB-9 connector with RS-232 is located in rear panel, one header is RS-232/422/485 with hardware auto-flow control, and the other four headers are RS-232.
- USB port: 2 x USB 3.1 Gen 2 ports on rear with up to 10 Gb/s data rate, 4 x USB 3.1 Gen 1 ports (2 rear, 2 via header), 7 x USB 2.0 ports (4 rear, 2 via header, 1 internal Type-A).
- LPC: One LPC connector to support optional Advantech LPC modules, such as PCA-TPM-00B1E
- **GPIO:** AIMB-786 supports 8-bit GPIO from super I/O for general purpose control application.

Note! AIMB-7

AIMB-786 is not equipped with PS/2 connector for keyboard/mouse. Please purchase an optional PS/2 keyboard/mouse cable (P/N:1700019268-11) and its bracket (P/N:1960063434N000) to be installed on the chassis rear slot.

1.3.4 Graphics

- Controller: Integrated Intel® HD Graphics.
- **Display memory:** Shared memory is subject to OS (maximum 1 GB shared memory with 2 GB or above memory installed).
- **DisplayPort:** Resolution up to 4096 x 2304 @ 60 Hz refresh rate.
- **DVI-D:** Resolution up to 1920 x 1200 @ 60 Hz refresh rate.
- VGA: Resolution up to 1920 x 1200 @ 60 Hz refresh rate.

1.3.5 Ethernet LAN

- Supports dual 10/100/1000Base-T Ethernet ports via PCle x1 bus which provides a 500 MB/s data transmission rate.
- Interface: 10/100/1000Base-T.
- Controller: Intel® I219-LM(PHY) for LAN1, Intel® I211-AT for LAN2.

1.3.6 Industrial Features

■ **Watchdog timer:** Can generate system reset or NC. The watchdog timer is programmable, with each unit equal to one second (255 levels).

1.3.7 Mechanical and Environmental Specifications

- Operating temperature: 0 ~ 60 °C (32 ~ 140 °F, depending on CPU speed and system thermal solution)
- Storage temperature: -40 ~ 85 °C (-40 ~ 185 °F)
- Humidity: 5 ~ 95% non-condensing
- Power supply voltage: +3.3 V, ±5 V, ±12 V, +5 VSB
- Power consumption: Intel® Core™ i7-8700 3.2 GHz; DDR4 16 G x 4 Maximum: +3.3 V at 2.8 A, +5 V at 1.77 A, +12 V at 3.77 A, +5 Vsb at 0.1 A, -5 V at 0.06 A, -12 V at 0.04 A
- **Board size:** 304.8 x 244 mm (12 x 9.6 in)
- **Weight of board:** 0.7 kg (1.54 lb)

1.4 Jumpers and Connectors

Connectors on the AIMB-786 motherboard link it to external devices such as hard disk drives and a keyboard. In addition, the board has a number of jumpers that are used to configure your system for your application.

The tables below list the function of each of the jumpers and connectors. Later sections in this chapter give instructions on setting jumpers. Chapter 2 gives instructions for connecting external devices to your motherboard.

Table 1.1: Jumpers	
Label	Function
JCMOS1	CMOS clearness
JME1	Intel® ME update
JWDT1	Watchdog timer reset
JOBS1	Hardware monitor alarm
PSON1	AT/ATX mode selection
JUSB_1	USB power source switch between +5 V and +5 V_ DUAL for rear USB ports
JUSB_2	USB power source switch between +5 V and +5 V_ DUAL for onboard USB ports
JPCICLK1	PCI clock selection
JSETCOM3	COM3 RS-232/422/485 jumper setting
JT1, JR1	COM3 RS-422/485 termination resistor
JFV1	VGA dummy load setting

Table 1.2: Connect	ors
Label	Function
LPT1	Parallel port, supporting SPP/EPP/ECP mode
LAN1, LAN2	LAN1, LAN2
USB3C1	USB 3.1 Gen 2 port 1, 2
USB3C2	USB 3.1 Gen 1 port 1, 2
USB3H1	USB 3.1 Gen 1 port 1, 2 (20-pin header)
USB2C1	USB 2.0 port 1, 2, 3, 4
USB2A1	USB 2.0 port (internal Type-A)
USB2H2	USB 2.0 port 1, 2 (10-pin header)
VGA1+DVI1	VGA connector / DVI-D connector
COM1+DP1	Serial port: RS-232 (DB-9 connector) / DP connector
DP2	Connector for optional DP/DVI/HDMI cable
COM2, COM4 ~ COM6	Serial port: RS-232 (9-pin header)
COM3	Serial port: RS-232/422/485 (9-pin header)
KBMS1	External keyboard and mouse connector (6-pin header)
CPUFAN1	CPU fan connector (4-pin)
SYSFAN1 ~ SYSFAN3	System fan connector (4-pin)
	Keyboard lock and power LED
JFP3	Suspend: fast flash (ATX/AT)
	System on: on (ATX/AT) System off: off (ATX/AT)
JFP2	External speaker / HDD LED connector / SMBus connector
JFP1	Power switch / reset connector
AUDIO1+AUDIO2	Audio connector (Line Out, Mic In)
VOLT1	Alarm board power connector
JCASE1	Case open connector
LANLED1	Front panel LAN indicator connector
SATA1 ~ SATA5	Serial ATA 3.0 port
PCI1	PCI slot
PCI2	PCI slot
PCIE1	PCIe x16 slot (Gen 3 x16 link)
PCIE2	PCIe x4 slot (Gen 3 x4 link)
PCIE3	PCIe x4 slot (Gen 3 x4 link)
PCIE4	PCIe x4 slot (Gen 3 x4 link)
PCIE5	PCIe x4 slot (Gen 3 x4 link)
DIMMA1	Channel A DIMM1
DIMMA2	Channel A DIMM2
DIMMB1	Channel B DIMM1
DIMMB2	Channel B DIMM2
ATX12V1	ATX 12 V auxiliary power connector (for CPU)
EATXPWR1	ATX 24-pin main power connector (for system)
SPI_CN1	Update BIOS pin header
SPDIF OUT1	SPDIF audio out pin header
GPIO1	8 bit GPIO from super I/O
SMBUS1	SMBus connector from PCH
FPAUD1	Front panel audio connector
LPC1	Low pin count connector
	<u> </u>

1.5 Board Layout: Jumper and Connector Locations

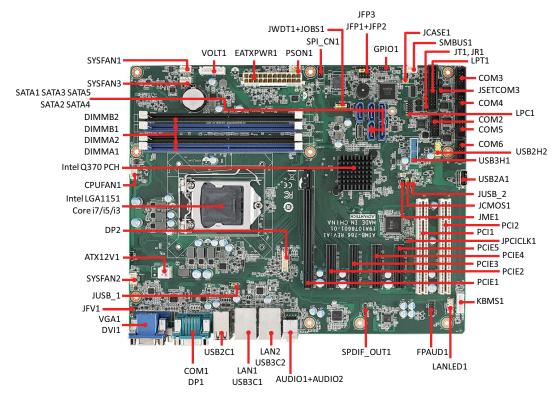


Figure 1.1 Jumper and Connector Locations

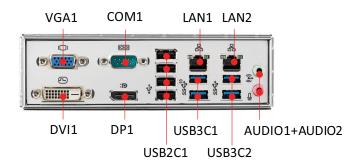


Figure 1.2 I/O connectors

Note!

AIMB-786 is not compatible with 1U chassis due to the height of the rear USB 2.0 ports.

Block Diagram 1.6

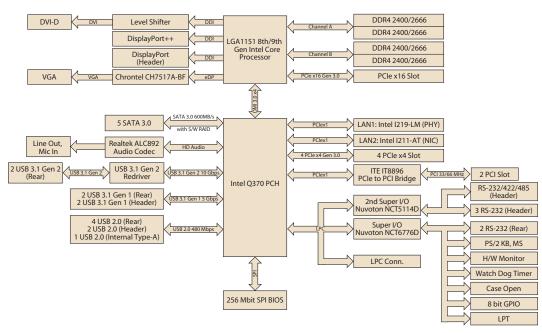


Figure 1.3 Block Diagram

1.7 **Safety Precautions**

Warning! Always completely disconnect the power cord from your chassis whenever you work with the hardware. Do not make connections while the power is on. Sensitive electronic components can be damaged by sudden power surges. Only experienced electronics personnel should open the PC chassis.

Caution! Always ground yourself to remove any static charge before touching the motherboard. Modern electronic devices are very sensitive to static electric discharges. As a safety precaution, use a grounding wrist strap at all times. Place all electronic components on a static-dissipative surface or in a static-shielded bag when they are not in the chassis.

Caution! The computer is provided with a battery-powered Real-time Clock circuit. There is a danger of explosion if battery is incorrectly replaced. Replace only with same or equivalent type recommended by the manufacturer. Discard used batteries according to manufacturer's instructions.

Caution! There is a danger of a new battery exploding if it is incorrectly installed. Do not attempt to recharge, force open, or heat the battery. Replace the battery only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

1.8 Jumper Settings

This section provides instructions on how to configure your motherboard by setting the jumpers. It also includes the motherboard default settings and your options for each jumper.

1.8.1 How to set jumpers

You can configure your motherboard to match the needs of your application by setting the jumpers. A jumper is a metal bridge that closes an electrical circuit. It consists of two metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To "close" (or turn on) a jumper, you connect the pins with the clip. To "open" (or turn off) a jumper, you remove the clip. Sometimes a jumper consists of a set of three pins, labeled 1, 2, and 3. In this case you connect either pins 1 and 2, or 2 and 3. A pair of needle-nose pliers may be useful when setting jumpers.

1.8.2 CMOS clear (JCMOS1) and Intel® ME update (JME1)

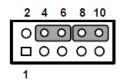
The AIMB-786 motherboard contains a jumper that can erase CMOS data and reset the system BIOS information. Normally this jumper should be set with pins 1-2 closed. If you want to reset the CMOS data, set JCMOS1 to 2-3 closed for just a few seconds, and then move the jumper back to 1-2 closed. This procedure will reset the CMOS to its default setting.

Table 1.3: CMOS clea	ar (JCMOS1) and Intel® ME update (JME1)
Function	Jumper Setting
* Keep CMOS data * Enable ME update	1 2 3 0 0 0 1-2 closed
Clear CMOS data Disable ME update	1 2 3
* default setting	

1.8.3 Watchdog timer output and OBS alarm (JWDT1+JOBS1)

The AIMB-786 contains a watchdog timer that will reset the CPU. This feature means the AIMB-786 will recover from a software failure or an EMI problem. The JWDT1 jumper settings control the outcome of what the computer will do in the event the watchdog timer is tripped.

The 2-pin OBS alarm header (JOBS1) is to enable/disable hardware monitor alarm function.


Table 1.4: Watchdo	g timer output and OBS alarm (Jw	D11+JOB51)
Function	Jumper Setting	
	2 4 6 8 40	2-4

Watchdog timer disable (2-4) OBS beep (8-10)

00000

2-4, 8-10 closed

*Watchdog timer reset (4-6) OBS beep (8-10)

4-6, 8-10 closed

2-4

Note!

The interrupt output of the watchdog timer is a low level signal. It will be held low until the watchdog timer is reset.

1.8.4 ATX/AT mode selection (PSON1)

Table 1.5: ATX/AT mode selection (PSON1)

Function	Jumper Setting
AT mode	1 2 3 0 0 0 1-2 closed
* ATX mode	1 2 3
* default setting	

^{*} default setting

1.8.5 USB power source switch between +5V and +5V_DUAL for rear USB ports (JUSB_1) and onboard USB ports (JUSB_2)

AIMB-786 allows users to set USB power between +5 V_DUAL and +5 V. When the jumper is set as +5 V, the board doesn't support wake up from S3 via keyboard or mouse

Table 1.6: USB power source switch between +5V and +5V_DUAL for rear USB ports (JUSB_1) and on board USB ports (JUSB_2)

Function	Jumper Setting
*USB +5 V_DUAL power	1 2 3 0 0 0 1-2 closed
USB +5 V power	1 2 3
* default setting	

Note!

Switching to USB +5V_DUAL is recommended for higher stability while a KVM is used.

The default setting is 1-2 closed, which means most of PCI cards can work well whether the clock is 33 or 66 MHz. In rare cases of compatibility issues, try to change to 2-3 pin to closed.

Jumper Setting	
1 2 3 0 0 0 1-2 closed	
1 2 3	
	1 2 3 1-2 closed

1.8.7 COM3 RS-232/422/485 jumper setting (JSETCOM3)

Use JSETCOM3 to select the RS-232/422/485 mode for COM3. The default setting is RS-232. While RS-485 is selected, change device mode to RS-485 for further choice of auto flow control under BIOS menu is necessary. Please refer to Chapter 3.2.2.10.

Table 1.8: COM3 RS-232/422/485 jumper setting (JSETCOM3) **Function** Setting *RS-232 RS-422 **RS-485** *default setting

1.8.8 COM3 RS-422/485 termination resistor (JT1, JR1)

To stabilize communications, JT1 and JR1 can enable or disable 120 ohm of termination resistor at board side for COM3 RS-422/485 mode to match impedance, depending on user's device application. JT1 is for TX signal line; JR1 is for RX signal line.

Table 1.9: COM3 RS-422/485 termination resistor (JT1, JR1)				
Function	Jumper Setting			
Disable termination	1 2 3	1-2 closed		
*Enable termination	1 2 3	2-3 closed		
* default setting				

1.8.9 VGA dummy load setting (JFV1)

The AIMB-786 contains an optional VGA dummy load feature set by the JFV1 jumper. The default setting is disabled.

If JFV1 is set to enable, a dummy monitor on the VGA port is created to prevent the on-board graphics from being switched off while no physical monitors are connected. This function is useful when you control the AIMB-786 via remote KVM (such as Intel® AMT) and do not intend to connect any monitors.

Table 1.10: VGA dummy load setting (JFV1)				
Function	Jumper Setting			
Enable VGA dummy load	1 2 3	1-2 closed		
*Disable VGA dummy load	1 2 3	2-3 closed		
* default setting				

Note!

It is recommended to leave this function disabled if you use DVI/DP as your main display.

1.9 System Memory

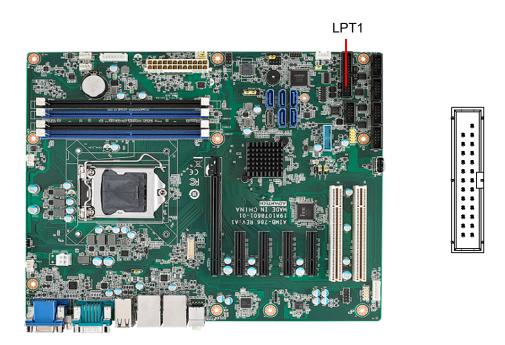
AIMB-786 has four 288-pin memory sockets for DDR4 2400/2666 memory modules with maximum capacity of 128 GB (Maximum 32 GB for each DIMM). The mother-board supports non-ECC unbuffered DIMMs (UDIMMs) and does NOT support registered DIMMs (RDIMMs)...

Note!

Because AIMB-786 supports Intel Active Management Technology (iAMT) which utilizes some memory space of channel 0, it's suggested that the user installs at least one memory module on channel 0 DIMM slot (DIMMA1 or DIMMA2), or it may cause some system abnormality.

1.10 Memory Installation Procedures

To install DIMMs, first make sure the two handles of the DIMM socket are in the "open" position. i.e. The handles lean outward. Slowly slide the DIMM module along the plastic guides on both ends of the socket, and then press the DIMM module right down into the socket, until you hear a click. This is when the two handles have automatically locked the memory module into the correct position of the DIMM socket. To remove the memory module, just push both handles outward, and the memory module will be ejected by the mechanism in the socket.

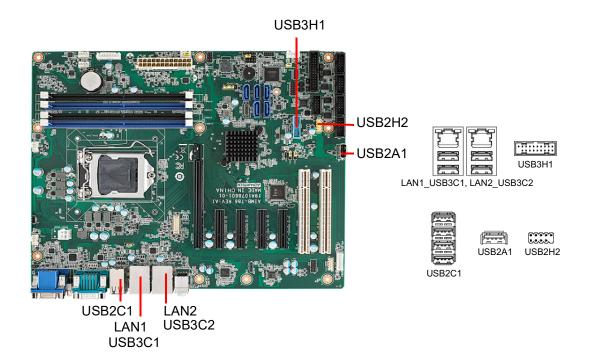

Chapter

Connecting Peripherals

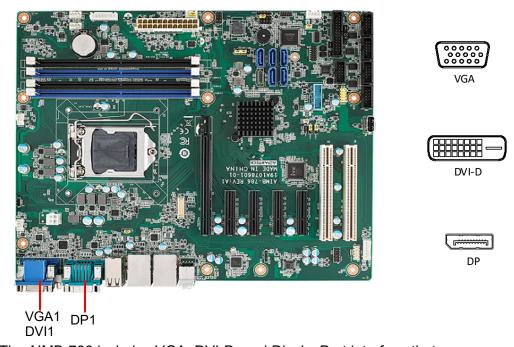
2.1 Introduction

You can access most of the connectors from the top of the board as it is being installed in the chassis. If you have a number of cards installed, you may need to partially remove a card to make all the connections.

2.2 Parallel Port (LPT1)

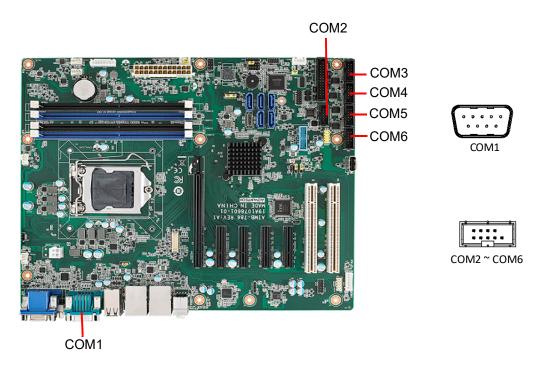

The parallel port is normally used to connect the motherboard to a printer. The AIMB-786 includes an on-board parallel port, accessed through a 25-pin flat-cable connector, LPT1.

LAN Port (LAN1, LAN2) and USB Port (USB3C1, **USB3C2, USB3H1, USB2C1, USB2A1, USB2H2)**


The AIMB-786 is equipped with two high-performance 1000 Mbps Ethernet LANs. They are supported by all major network operating systems. The RJ-45 jacks on the rear plate provide convenient 1000Base-T operation.

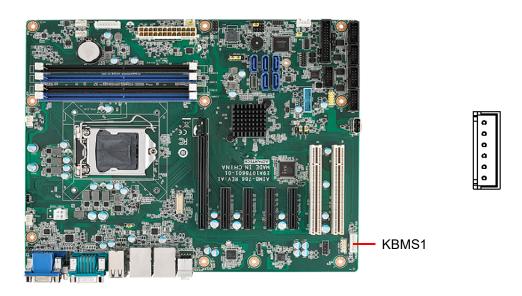
The AIMB-786 provides 13 USB ports. USB2C1, USB2A1, and USB2H2 are USB 2.0 ports supporting transmission rate up to 480 Mbps. USB3C2 and USB3H1 are USB 3.1 Gen 1 ports supporting transmission rate up to 5 Gbps. USB3C1 is USB 3.1 Gen 2 ports delivering data rate up to 10 Gbps. The USB interface can be disabled in the system BIOS setup menu.

If all USB ports are used, USB power is recommended to switch to +5 V instead of +5 V DUAL.



2.4 VGA Connector (VGA1), DVI-D Connector (DVI1), and DisplayPort Connector (DP1)

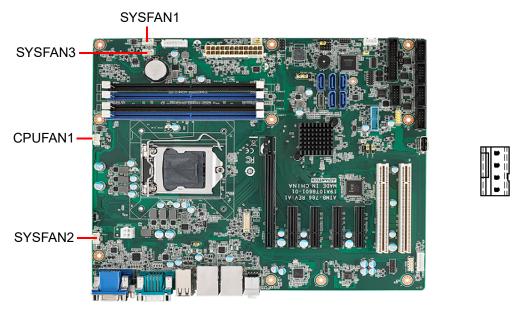
The AIMB-786 includes VGA, DVI-D, and DisplayPort interface that can connect display devices. Pin assignments are detailed in Appendix B.


2.5 Serial Port (COM1 ~ COM6)

The AIMB-786 offers six serial ports (one on the rear panel and five on-board). COM3 can be configured as RS-232/422/485 by jumper settings (see Chapter 1), and selecting correct device mode for RS-485 under BIOS is necessary (see Chapter 3). These ports can connect to a serial mouse, printer or communications network. The IRQ and address ranges for those ports are fixed. However, if you want to disable the port or change these parameters later, you can do this in the system BIOS

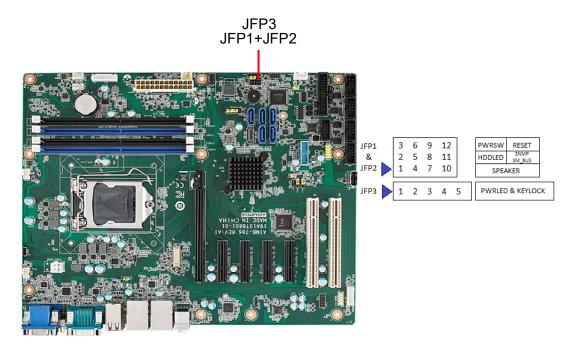
setup. Different devices implement the RS-232/422/485 standards in different ways. If you are having problems with a serial device, please be sure to check the pin assignments for the connector.

2.6 External Keyboard and Mouse Connector (KBMS1)


A 6-pin header on the motherboard is for an optional PS/2 keyboard/mouse cable. This gives system integrators greater flexibility in designing their systems.

Note!

An optional PS/2 keyboard/mouse cable (P/N: 1700019268-11) and its bracket (P/N: 1960063434N000) must be assembled together and installed on the chassis rear PCI slot. Therefore, one expansion slot of the motherboard cannot be used.


2.7 CPU and System Fan Connector (CPUFAN1, SYSFAN1 ~ SYSFAN3)

If a fan is used, this connector supports cooling fans that draw up to 500 mA (6 W).

2.8 Front Panel Connector (JFP1, JFP2, JFP3)

There are several external switches and LEDs to monitor and control the AIMB-786.

2.8.1 Power LED and Keyboard Lock (JFP3)

JFP3 is a 5-pin connector for the power LED and keyboard lock. Refer to Appendix B for detailed information on the pin assignments. If a PS/2 or ATX power supply is used, the system's power LED status will be as indicated as follows.

Table 2.1: PS/2 or ATX power supply LED status				
Power mode	LED (PS/2 power)	LED (ATX power)		
System On	On	On		
System Suspend	Fast flashes	Fast flashes		
System Off	Off	Off		
System Off in deep sleep	Off	Off		

2.8.2 External Speaker (JFP2 pins 1, 4, 7, 10)

JFP2 is a 8-pin connector for an external speaker. The AIMB-786 provides an onboard buzzer as an alternative. To enable the buzzer, set pins 7-10 as closed.

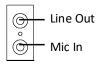
2.8.3 HDD LED Connector (JFP2 pins 2, 5)

You can connect a LED to pins 2 and 5 of JFP2 to indicate when the HDD is active.

2.8.4 SMBus Connector (JFP2 pins 8, 11)

AIMB-786 supports Advantech SAB-2000 module for providing a platform independent system management. When installing SAB-2000 module on AIMB-786, please connect it to pins 8 and 11 of JFP2.

2.8.5 ATX Soft Power Switch (JFP1 pins 3, 6)


If your computer case is equipped with an ATX power supply, you should connect the power on/off button on your computer case to pins 3 and 6 of JFP1. This connection enables you to turn your computer on and off.

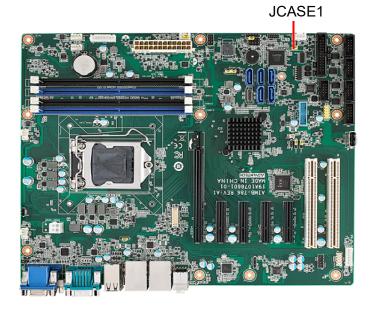
2.8.6 Reset Connector (JFP1 pins 9, 12)

Many computer cases offer the convenience of a reset button.

2.9 Line Out, Mic In Connector (AUDIO1_AUDIO2)

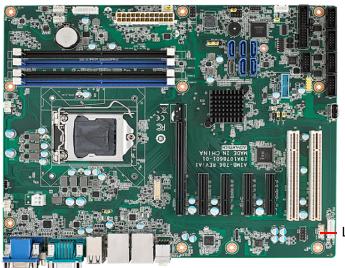
AUDIO1+AUDIO2

Line Out can be connected to external audio devices like speakers or headphones. Mic In can be connected to a microphone.


2.10 8-pin Alarm Board Connector (VOLT1)

VOLT1 connects to the alarm board on the Advantech chassis. The alarm board gives warnings if a power supply or fan fails, chassis overheats, or the backplane malfunctions.

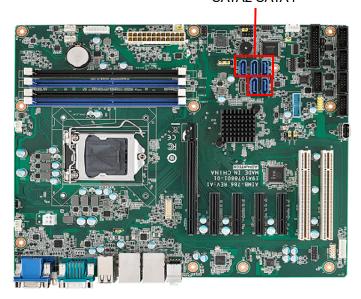
2.11 Case Open Connector (JCASE1)



JCASE1 is for chassis with a case open sensor. The buzzer on the motherboard sounds if the case is opened unexpectedly. The default function is disabled and pins 1-2 is bridged by a jumper cap.

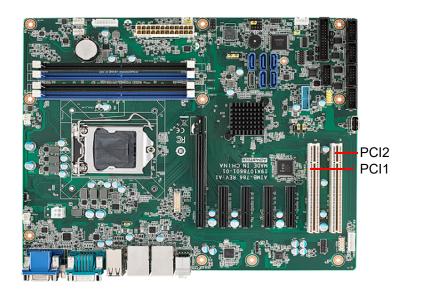
2.12 Front Panel LAN Indicator Connector (LANLED1)

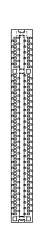
Table 2.2: Front Panel LAN Indicator Connector				
LAN Mode	Indicator			
LAN Link ON	ON			
LAN Active	Flash			
LAN Link Off	OFF			



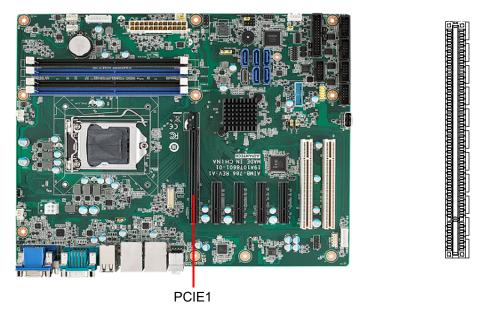
LANLED1

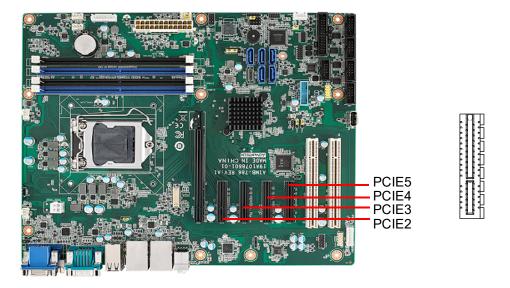
2.13 Serial ATA Interface (SATA1 ~ SATA5)


SATA1 SATA3 SATA5 SATA2 SATA4



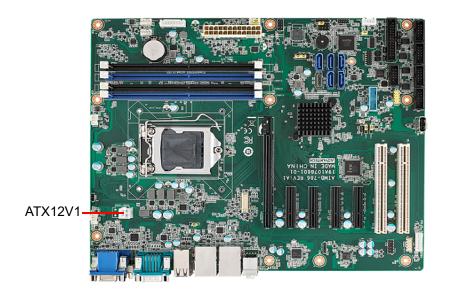
AIMB-786 features five high performance serial ATA 3.0 interfaces (up to 600 MB/s) with long, thin, easy-to-run SATA cables.


2.14 PCI Slot (PCI1, PCI2)


The AIMB-786 provides two 32-bit / 33 MHz PCI slots.

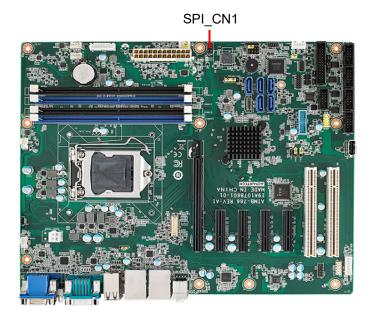
2.15 PCIe x16 Expansion Slot (PCIE1)

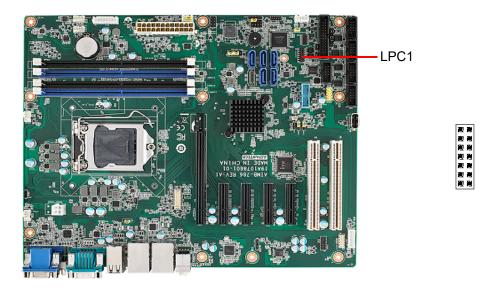
The AIMB-786 provides a PCIe x16 slot for users to install an add-on peripheral card for extension requirements.


2.16 PCIe x4 Expansion Slot (PCIE2 ~ PCIE5)

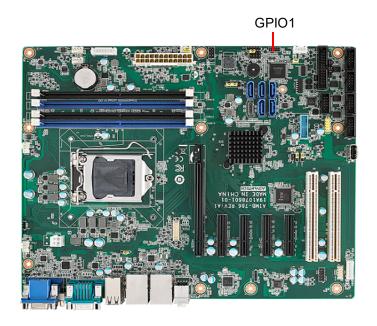
The AIMB-786 offers four PCIe x4 slots for users to install add-on cards for extension requirements.

2.17 Auxiliary 4-pin Power Connector (ATX12V1)

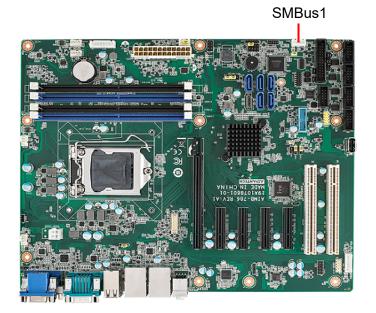

To ensure that the enough power is supplied to the CPU, one auxiliary 4-pin power connector is available on the AIMB-786. ATX12V1 must be used to provide sufficient 12 V power to ensure the stable operation of the system.


2.18 SPI Flash Connector (SPI_CN1)

The SPI programmer (fixture) can flash the BIOS via the pin header of SPI_CN1 if AIMB-786 BIOS was corrupted and can't be powered up (booted up).


2.19 Low Pin Count Connector (LPC1)

LPC connector on AIMB-786 is reserved for optional Advantech LPC modules.


Table 2.3: Advantech LPC Module List	
P/N	Description
PCA-TPM-00B1E	TPM 2.0 LPC module
PCA-COM232-00A1E	4-port RS-232 LPC module (BIOS customization is required.)
PCA-COM485-00A1E	4-port RS-422/485 LPC module (Hardware and BIOS customization is required).

2.20 GPIO Connector (GPIO1)

2.21 SMBus Connector (SMBUS1)

Chapter

BIOS Operation

3.1 Introduction

With the AMI BIOS Setup Utility, you can modify BIOS settings and control the specific features of your computer. The Setup Utility uses a number of menus for making changes and turning the specific features on or off. This chapter describes the basic navigation of the AIMB-786 setup screens.

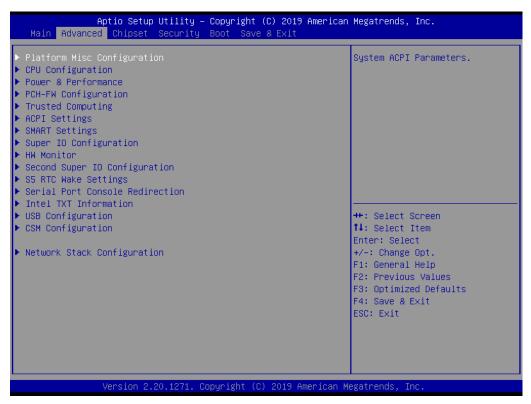


Figure 3.1 Main setup screen

AMI's BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. This information is stored in NVRAM area so it retains the Setup information when the power is turned off.

3.2 Entering BIOS Setup

Press at bootup to enter AMI BIOS Setup Utility, the Main Menu will appear on the screen. Use arrow keys to select among the items and press <Enter> to accept or enter the sub-menu.

The Main BIOS setup screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured; options in blue can be. The right frame displays the key legend.

The key legend above is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it.

3.2.1 Main Menu

When users first enter the BIOS Setup Utility, they enter the Main setup screen. Users can always return to the Main setup screen by selecting the Main tab. There are two Main Setup options described in this section. The Main BIOS Setup screen is shown below.

Figure 3.2 Main setup screen

The Main BIOS setup screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured; options in blue can be. The right frame displays the key legend.

The key legend above is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it.

System time / System date

Use this option to change the system time and date. Highlight System Time or System Date using the <Arrow> keys. Enter new values through the keyboard. Press the <Tab> key or the <Arrow> keys to move between fields. The date must be entered in MM/DD/YY format. The time must be entered in HH:MM:SS format.


3.2.2 Advanced BIOS Features Setup

Select the Advanced tab from the AIMB-786 setup screen to enter the Advanced BIOS setup screen. You can select any of the items in the left frame of the screen, such as CPU configuration, to go to the sub menu for that item. You can display an Advanced BIOS Setup option by highlighting it using the <Arrow> keys. All Advanced BIOS Setup options are described in this section. The Advanced BIOS Setup screens are shown below. The sub menus are described on the following pages.

Figure 3.3 Advanced BIOS features setup screen

3.2.2.1 Platform Misc Configuration

Figure 3.4 Platform Misc Configuration

■ Platform Misc Configuration

- Native PCIE Enable
 PCI Express Native Support Enable/Disable.
- Native ASPM

On enable, OS will control the ASPM support for the device. If disabled, the BIOS will.

3.2.2.2 CPU Configuration

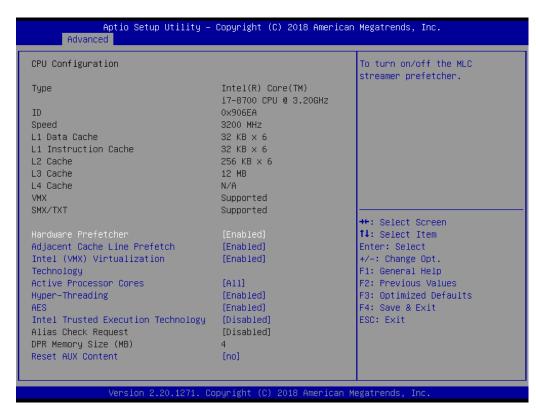


Figure 3.5 CPU Configuration

Hardware Prefetcher

Hardware Prefetcher is a technique that fetches instructions and/or data from memory into the CPU cache memory well before the CPU needs it to improve the load-to-use latency. You may choose to "Enable or Disable" it.

Adjacent Cache Line Prefetch

The Adjacent Cache-Line Prefetch mechanism, like automatic hardware prefetch, operates without programmer intervention. When it is enabled through the BIOS, two 64-byte cache lines are fetched into a 128-byte sector, regardless of whether the additional cache line has been requested or not. You may choose to "Enable or Disable" it.

Intel® Virtualization Technology

This feature is used to "Enable or Disable" Intel® Virtualization Technology (IVT) extension. It allows multiple operating systems to run simultaneously on the same system by creating virtual machines, each running its own x86 operating system.

Active Processor Core

Use this item to select the number of processor cores you want to activate when you are using a dual or quad core processor.

Hyper-Threading

"Enable or Disable" Intel® Hyper Threading technology.

AES

"Enable or Disable" CPA advanced encryption standard instruction.

Intel® Trusted Execution Technology

"Enable or Disable" utilization of additional hardware capabilities provided by Intel Trusted Execution Technology. Changes require a full power cycle to take effect.

Rest AUX Content

Reset TPM AUX content. TXT may not be functional after AUX content gets reset.

3.2.2.3 Power & Performance

Figure 3.6 Power & Performance



Figure 3.7 CPU - Power Management Control

■ Boot Performance

Select the performance state that the BIOS will set before OS handoff.

■ Intel® Speedstep™

Allows more than two frequency ranges to be supported.

C states

Intel® C states setting for power saving.

3.2.2.4 PCH-FW Configuration

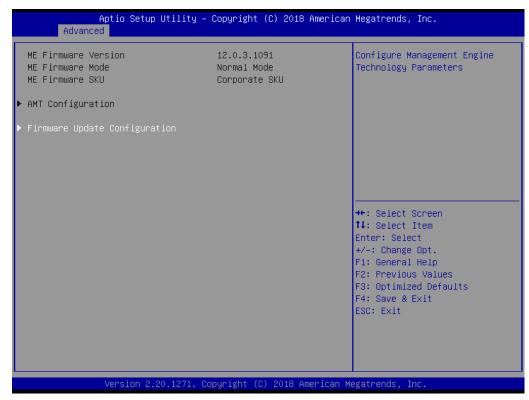
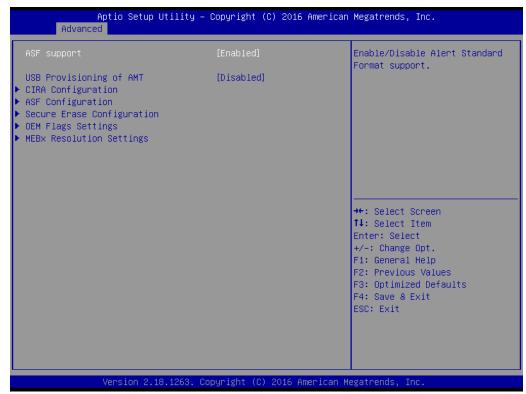



Figure 3.8 PCH-FW Configuration

PCH-FW Version

PCH-FW page shows Intel® ME FW information.

AMT Configuration

Figure 3.9 AMT Configuration

CIRA Configuration

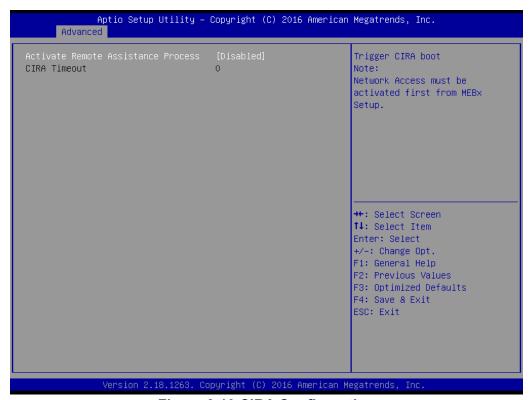


Figure 3.10 CIRA Configuration

 Activate Remote Assistance Process Trigger CIRA boot.

■ ASF Configuration

Figure 3.11 ASF Configuration

- PET Progress

"Enable or Disable" PET events Progress to receive PET events.

WatchDog

"Enable or Disable" Watchdog Timer.

- ASF Sensors Table

"Enable or Disable" to add ASF Sensor Table into ASF ACPI Table.

Secure Erase Configuration

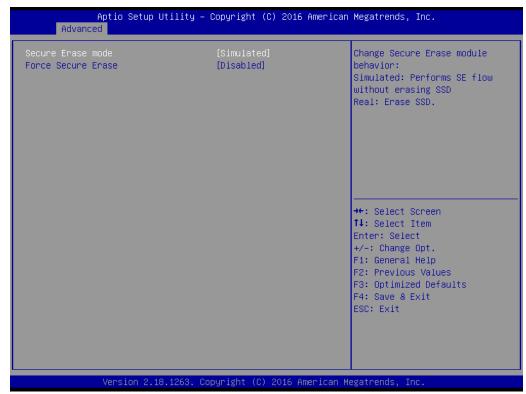


Figure 3.12 Secure Erase Configuration

Secure Erase mode

Change Secure Erase module behavior as "Simulated or Real".

- Force Secure Erase
- "Enable or Disable" force Secure Erase on next boot.
- OEM Flags Settings

Figure 3.13 OEM Flags Settings

- MEBx hotkey Pressed

"Enable or Disable" automatic MEBx hotkey press.

- MEBx Selection Screen

"Enable or Disable" MEBx Selection Screen.

Hide Un-Configure ME Confirmation Prompt

Hide Un-Configure ME without password confirmation prompt.

- MEBx OEM Debug Menu Enable

"Enable or Disable" OEM debug menu in MEBx.

- Unconfigure ME

Un-Configure ME without password.

■ MEBx Resolution Settings

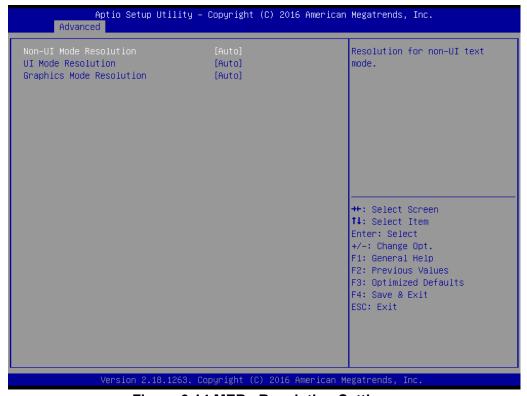


Figure 3.14 MEBx Resolution Settings

Non-UI Mode Resolution

Set resolution for non-UI text mode.

- UI Mode Resolution

Set resolution for UI text mode.

- Graphics Mode Resolution

Set resolution for graphics mode.

■ Firmware Update Configuration

Figure 3.15 Firmware Update Configuration

- ME FW Image Re-flash

"Enable or Disable" ME firmware image re-flash function.

3.2.2.5 Trusted Computing

Figure 3.16 TPM Settings

■ TPM Support

"Enable or Disable" TPM Support. You can purchase Advantech LPC TPM module to enable TPM function. P/N: PCA-TPM-00B1E.

3.2.2.6 ACPI Settings

Figure 3.17 ACPI Settings

Enable Hibernation

"Enable or Disable" Hibernation (OS/S4 Sleep State). This option may not be applied in some OS.

ACPI Sleep State

"Auto or S1 only or S3 only" ACPI Sleep State.

Lock Legacy Resources

"Enable or Disable" Lock Legacy Resources.

S3 Video Repost

"Enable or Disable" S3 Video Repost.

3.2.2.7 SMART Settings

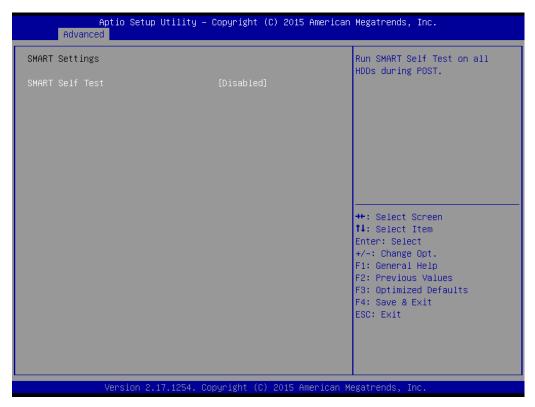


Figure 3.18 SMART Settings

■ SMART Self Test

"Enable or Disable" SMART Self Test on all HDDs during POST.

3.2.2.8 Super IO Configuration

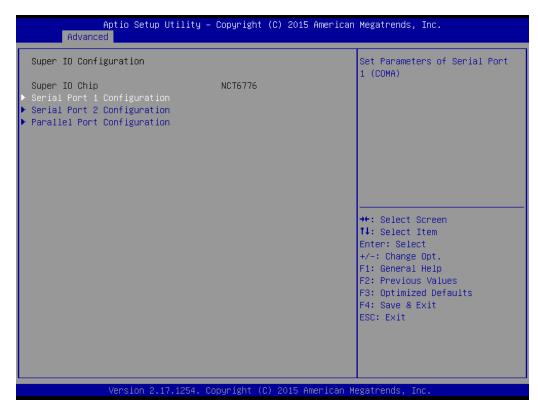


Figure 3.19 Super IO Configuration

Figure 3.20 Serial Port 1 Configuration

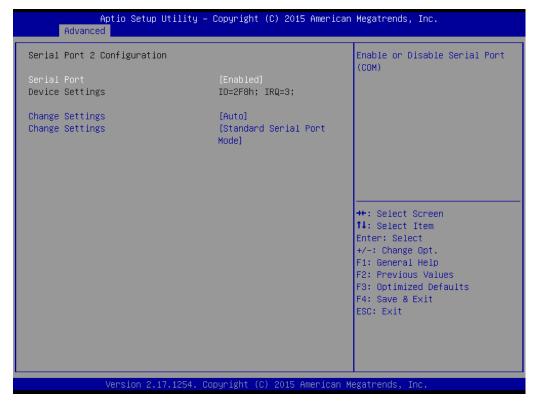
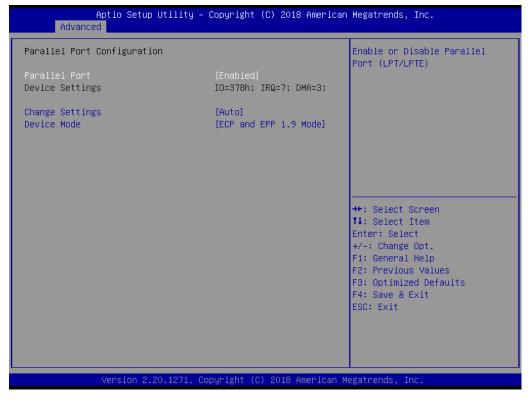



Figure 3.21 Serial Port 2 Configuration

Figure 3.22 Parallel Port Configuration

Serial Port 1 Configuration

Serial Port

"Enable or Disable" Serial Port 1.

Change Settings

Select an optimal setting for serial port 1.

Serial Port 2 Configuration

Serial Port

"Enable or Disable" Serial Port 2.

Change Settings

Select an optimal setting for serial port 2.

Change Settings

Serial port 2 could be selected as "Standard serial port mode" or "IrDA 1.0 Active pulse 1.6 uS".

Parallel Port Configuration

Parallel Port

"Enable or Disable" Parallel Port.

Change Settings

Select an optimal setting for parallel port.

Device Mode

Parallel port could be selected as "ECP and EPP 1.9 Mode" or other settings.

3.2.2.9 H/W Monitor

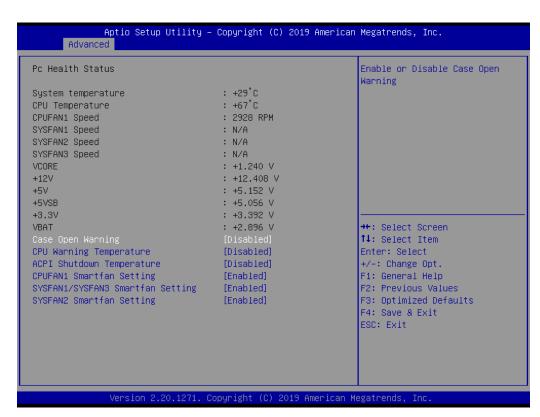


Figure 3.23 PC Health Status

Case Open Warning

"Enable or Disable" the Chassis Intrusion monitoring function. When it is enabled and the case is opened, the speaker beeps.

CPU Warning Temperature

Use this item to set the CPU warning temperature. When the system reaches the warning temperature, the speaker will beep.

ACPI Shutdown Temperature

Use this item to set the ACPI shutdown temperature. When the system reaches the shutdown temperature, it will be automatically shut down by ACPI OS to protect the system from overheat damage.

■ CPUFAN1 Smartfan Setting

"Enable or Disable" CPUFAN1 Mode to SMART FAN setting.

SYSFAN1/SYSFAN3 Smartfan Setting

"Enable or Disable" SYSFAN1/SYSFAN3 Mode to SMART FAN setting.

■ SYSFAN2 Smartfan Setting

"Enable or Disable" SYSFAN2 Mode to SMART FAN setting.

3.2.2.10 Second Super I/O Configuration

Figure 3.24 Second Super IO Configuration

AIMB-786 supports 2nd super I/O for COM 3~6. This page of BIOS menu is to set respective serial port configuration.

Figure 3.25 Serial Port 3 Configuration

Serial Port 3 Configuration

Serial Port

"Enable or Disable" serial port 3.

Change Settings

Select an optimal setting for serial port 3.

- Device Mode

When serial port 3 (COM3) is set to RS-485 mode via jumper JSETCOM3, this item should be selected as "RS-485 (Half Duplex)" and further set Auto Direction (Flow) Control setting to "On (enable) or Off (disable)". Default for this Device Mode is "RS-232/422".

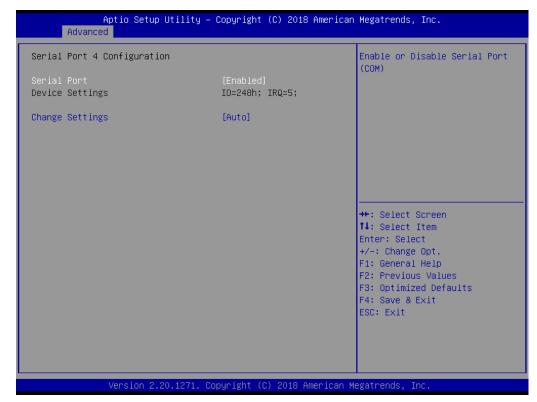


Figure 3.26 Serial Port 4 Configuration

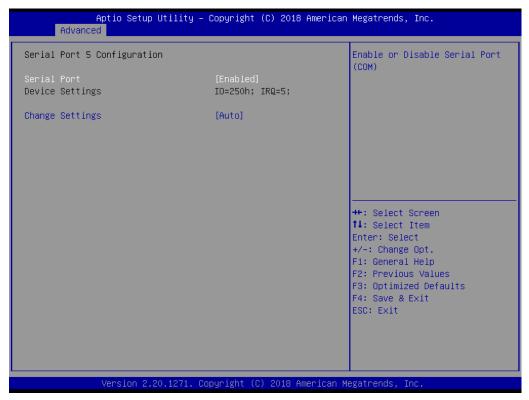


Figure 3.27 Serial Port 5 Configuration

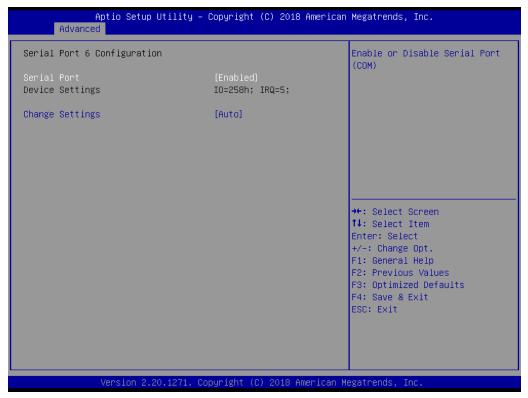


Figure 3.28 Serial Port 6 Configuration

Serial Port 4 configuration

Serial Port

"Enable or Disable" serial port 4.

Change Settings

Select an optimal setting for serial port 4.

Serial Port 5 configuration

Serial Port

"Enable or Disable" serial port 5.

Change Settings

Select an optimal setting for serial port 5.

Serial Port 6 configuration

Serial Port

"Enable or Disable" serial port 6.

Change Settings

Select an optimal setting for serial port 6.

3.2.2.11 S5 RTC Wake Settings

Figure 3.29 S5 RTC Wake Settings

■ Wake system with Fixed Time

"Enable or Disable" System wake on alarm event. The system will wake on the hr:min:sec as specified.

3.2.2.12 Serial Port Console Redirection

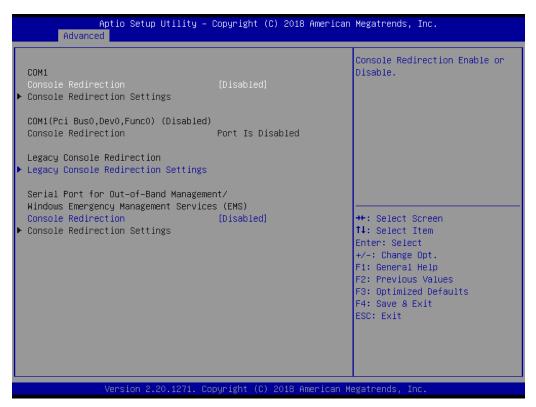


Figure 3.30 Serial Port Console Redirection

COM₁

- Console Redirection Settings Console Redirection "Enable or Disable".
- **Legacy Console Redirection**
 - Legacy Console Redirection Settings Select a COM port to display redirection of Legacy OS and Legacy OPROM Messages.
- Serial Port for Out-of-Band Management/ Windows Emergency Management services (EMS)
 - Console Redirection Settings Console Redirection "Enable or Disable".

3.2.2.13 Intel® TXT Information

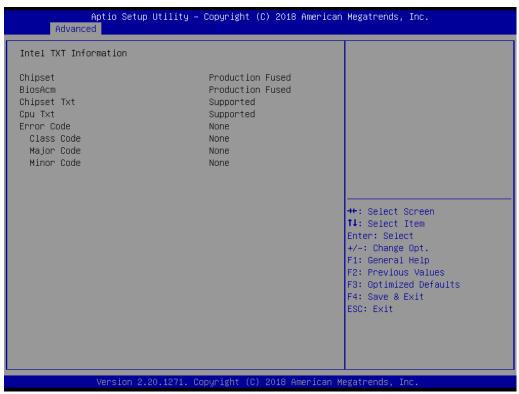


Figure 3.31 Intel® TXT Information

3.2.2.14 USB Configuration

Figure 3.32 USB Configuration

Legacy USB Support

This is for supporting USB device under legacy OS such as DOS. When choosing "AUTO", the system will automatically detect if any USB device is plugged into the computer and enable USB legacy mode when a USB device is plugged and disable USB legacy mode when no USB device is plugged.

XHCI Hand-off

This is a workaround for OS without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.

USB Mass Storage Driver Support

"Enable or Disable" USB Mass Storage driver support.

USB transfer time-out

Allows you to select the USB transfer time-out value. [1,5,10,20sec]

Device reset time-out

Allows you to select the USB device reset time-out value. [10,20,30,40sec]

Device power-up delay

Maximum time the device will take before it properly reports itself to the Host Controller. "Auto" uses default value: for a Root port it is 100 ms, for a Hub port the delay is take from Hub descriptor.

Mass Storage Devices

Mass storage device emulation type. "Auto" enumerates device according to their media format. Optical drives are emulated as "CD-ROM", drives with no media will be emulated according to a drive type.

3.2.2.15 CSM Configuration

Figure 3.33 CSM Configuration

■ Compatibility Support Module Configuration

CSM Support

"Enable or Disable" CSM Support. The default setting is "Disabled". If your graphic card does not support UEFI mode, make sure to select "Enabled" to allow non-UEFI boot mode before installing the graphic card to turn on the computer.

Figure 3.34 Network Stack Configuration

■ Network Stack

"Enable or Disable" UEFI Network Stack.

3.2.3 Chipset

Figure 3.35 Chipset

This page provides information of the chipset on AIMB-786.

3.2.3.1 System Agent (SA) Configuration

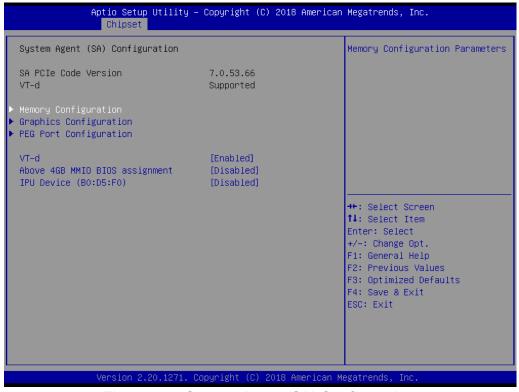
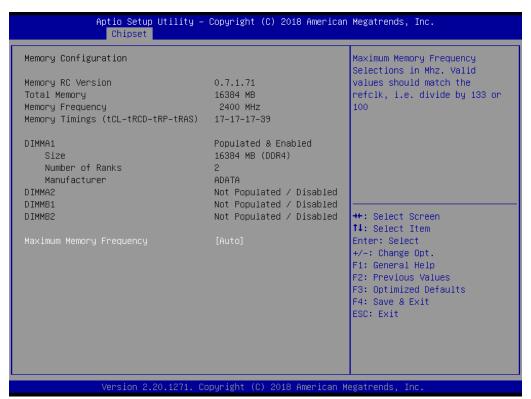


Figure 3.36 System Agent (SA) Configuration


- VT-d
 - "Enable or Disable" VT-d function.
- Above 4GB MMIO BIOS assignment

"Enable or Disable" above 4GB MemoryMappedIO BIOS assignment.

■ IPU Device (B0:D5:F0)

"Enable or Disable" SA IPU device.

3.2.3.2 Memory Configuration

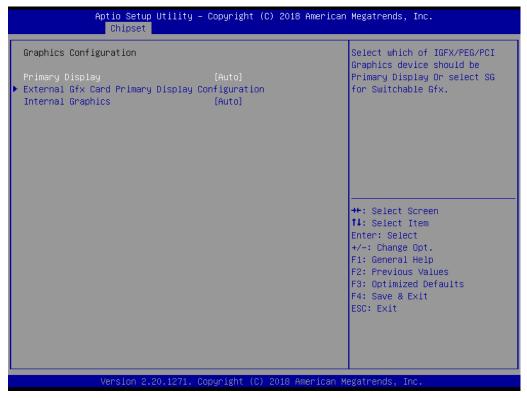


Figure 3.37 Memory Configuration

■ Maximum Memory Frequency

Maximum memory frequency selections in MHz.

3.2.3.3 Graphics Configuration

Figure 3.38 Graphics Configuration

- Primary Display
 Set Primary Display to "Auto", "IGFX", "PEG", "PCI", or "SG".
- Internal Graphics
 Set Internal Graphics to "Auto", "Disable" or "Enable".

3.2.3.4 PEG Port Configuration

Figure 3.39 PEG Port Configuration

Figure 3.40 PEG Port Feature Configuration

- Enable Root Port
 - "Enable or Disable" the root port.
- Max Link speed
 - Configure PEG 0:1:0 max speed.

■ PEG Port Feature Configuration

Detect Non-Compliance Device

Detect non-compliance PCI Express device in PEG. If enabled, it will take more time at POST time.

3.2.3.5 PCH-IO Configuration

Figure 3.41 PCH-IO Configuration

■ LAN1 Controller

"Enable or Disable" LAN1 controller.

■ LAN1 Option-ROM

"Enable or Disable" LAN1 boot option for legacy network devices.

■ LAN2 Controller

"Enable or Disable" LAN2 controller.

■ LAN2 Option-ROM

"Enable or Disable" LAN2 boot option for legacy network devices.

PCIE Wake

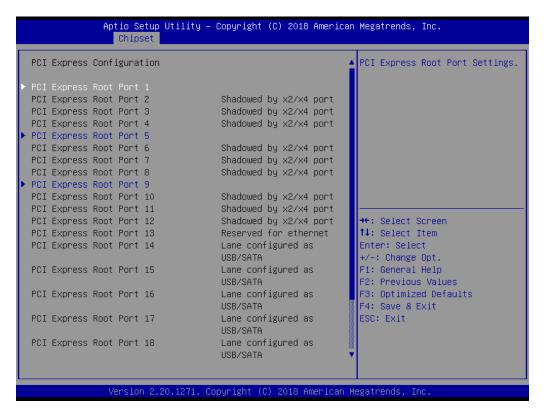
"Enable or Disable" PCIE to wake the system from S5. When this item is selected as "Disabled", Wake on LAN2 function is also disabled.

PowerOn by Modem

"Enable and Disable" PowerOn by Modem

Deep Sleep

"Enable or Disable" Deep Sleep.


Restore AC Power Loss

Behavior when recovering from AC power loss: "S0" (power on), "S5" (power off), or "Last State".

■ PCIE Device Initial Delay

Users can set seconds to delay PCIE device initial time.

3.2.3.6 PCI Express Configuration

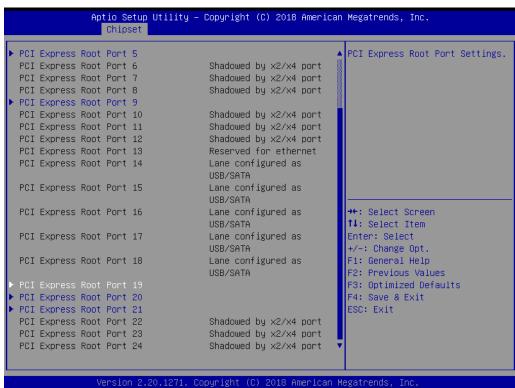
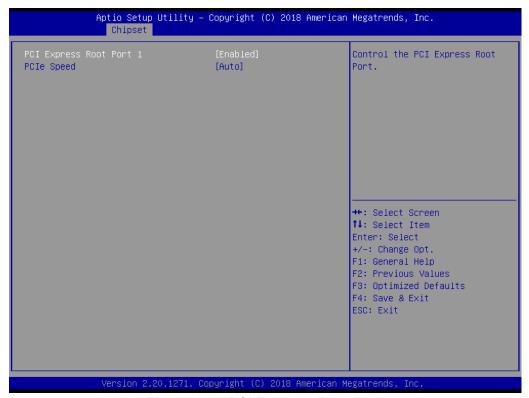



Figure 3.42 PCI Express Configuration

Figure 3.43 PCI Express Root Port

- PCI Express Root Port 1
 - "Enable or Disable" PCI Express Root Port.
- PCIe Speed

Select "Auto, Gen1, Gen2, Gen3" for PCle Speed.

3.2.3.7 SATA and RST Configuration

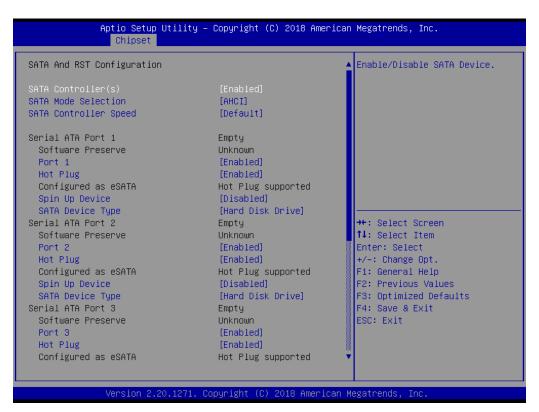


Figure 3.44 SATA and RST Configuration

■ SATA Controller(s)

"Enable or Disable" SATA controller.

SATA Mode Selection

This can be configured as "RAID or AHCI".

SATA Controller Speed

Indicates the maximum speed the SATA controller can support by selecting "Default, Gen1, Gen2, Gen3".

■ Port 1~5

"Enable or Disable" SATA port 1~5.

Hot Plug

"Enable or Disable" SATA Hot-Plug.

Spin Up Device

"Enable or Disable" spin up device.

■ SATA Device Type

To identify the SATA that is connected to a "Solid State Drive or Hard Disk Drive".

3.2.3.8 USB Configuration

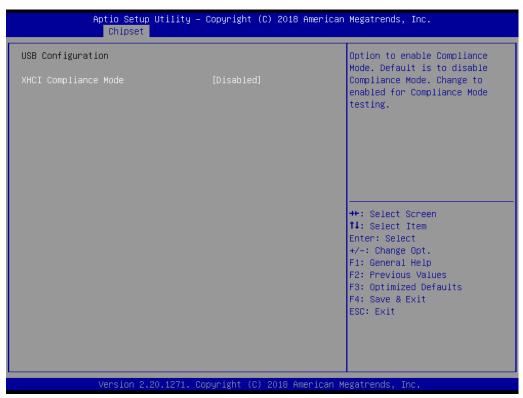


Figure 3.45 USB Configuration

XHCI Compliance Mode

Option to "Enable or Disable" XHCI compliance mode. Default is to disable compliance mode.

3.2.3.9 Security Configuration

Figure 3.46 Security Configuration

RTC Memory Lock

Enable will lock bytes 38h-3Fh in the lower/upper 128-byte bank of RTC RAM.

BIOS Lock

"Enable or Disable" the PCH BIOS Lock Enable feature. Required to be enabled to ensure SMM protection of flash.

Force unlock on all GPIO pads

If Enabled, BIOS will force all GPIO pads to be in unlocked state.

3.2.3.10 HD Audio Configuration

Figure 3.47 HD Audio Configuration

HD Audio

Control detection of the HD-Audio device.

Disable = HDA will be unconditionally disabled.

Enable=HDA will be unconditionally enabled.

3.2.4 Security

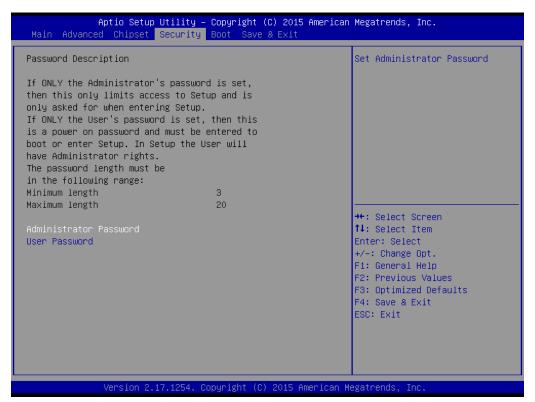


Figure 3.48 Security

Select Security Setup from the AIMB-786 Setup main BIOS setup menu. All Security Setup options, such as password protection are described in this section. To access the sub menu for the following items, select the item and press <Enter>.

Note!

If only the User's password is set, the User will have Administrator rights. To set Administrator password is strongly recommended if you have security concerns.

3.2.5 **Boot**

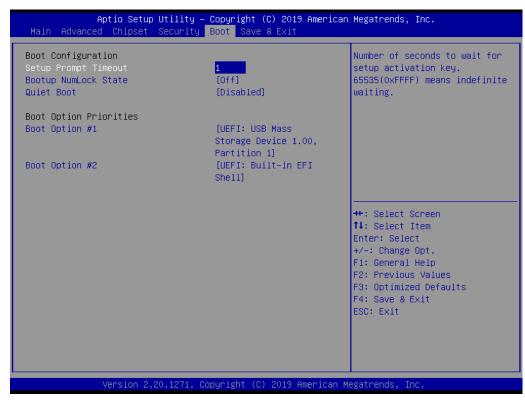


Figure 3.49 Boot

Setup Prompt Timeout

Directly key in the number, or use the <+> and <-> keys to adjust the number of seconds to wait for setup activation key.

■ Bootup NumLock State

Default state for the NumLock key during power on.

Quiet Boot

"Enable or Disable" Quiet Boot option. When enabled, BIOS logo will show in place of POST screen.

Boot Option Priorities

Set the boot order.

3.2.6 Save & Exit

Figure 3.50 Save & Exit

Save Changes and Exit

When you complete system configuration, select this option to save your changes, exit BIOS setup and reboot the computer so the new system configuration parameters can take effect.

1. Select Exit Saving Changes from the Exit menu and press <Enter>. The following message appears:

Save Configuration Changes and Exit Now? [Yes] [No]

2. Select Yes or No.

Discard changes and exit

Select this option to quit Setup without making any permanent changes to the system configuration.

1. Select Exit Discarding Changes from the Exit menu and press <Enter>. The following message appears:

Quit without saving?

[Yes] [No]

2. Select Yes to discard changes and exit.

Discard Changes

Select Discard Changes from the Exit menu and press <Enter>.

Chapter

Chipset Software Installation Utility

4.1 Before you begin

To facilitate the installation of the enhanced display drivers and utility software, read the instructions in this chapter carefully. The drivers for the AIMB-786 are located on Advantech support website (http://www.advantech.com/support). Updates are provided via Service Packs from Microsoft.

Before you begin, it is important to note that most display drivers need to have the relevant software application already installed in the system prior to installing the enhanced display drivers. In addition, many of the installation procedures assume that you are familiar with both the relevant software applications and operating system commands. Review the relevant operating system commands and the pertinent sections of your application software's user manual before performing the installation.

Note!

For system stability, installing the drivers in the following sequence is highly recommended:

- Chipset
- Graphics
- ME
- Other drivers

4.2 Introduction

The Intel® Chipset Software Installation (CSI) utility installs the Windows INF files that outline to the operating system how the chipset components will be configured. This is needed for the proper functioning of the following features:

- Core PCI PnP services
- Serial ATA interface support
- Identification of Intel® chipset components in the Device Manager

Note!

The chipset driver is used for the following versions of Windows, and it has to be installed before installing all the other drivers.

■ Windows 10 (64-bit)

4.3 Windows Driver Setup

Enter the Advantech support website, then search product AIMB-786. You can see "Chipset" driver inside.

Chapter

Integrated Graphic Device Setup

5.1 Introduction

The Intel® processors are embedded with integrated graphics controller. You need to install the VGA driver to enable this function, which includes the following features:

Optimized integrated graphic solution: With Intel® Graphics Flexible Display Interface, it supports versatile display options and 32-bit 3D graphics engine. Triple independent display, enhanced display modes for wide-screen flat panels for extend and clone multiple display mode, and optimized 3D support delivers an intensive and realistic visual experience.

5.2 Windows Driver Setup

Note!

Before installing this driver, make sure the INF driver has been installed in your system. See Chapter 4 for information on installing the INF driver.

Enter the Advantech support website, then search for product AIMB-786. You can see "Graphics" driver inside.

Chapter

6

Intel® ME

6.1 Introduction

The Intel® ME software components that need to be installed depend on the system's specific hardware and firmware features. The installer detects the system's capabilities and installs the relevant drivers and applications.

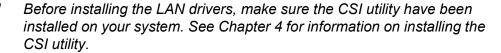
6.2 Installation

Enter the Advantech support website, then search for product AIMB-786. You can see "ME" driver inside.

Chapter

LAN Configuration

7.1 Introduction


The AIMB-786 has dual Gigabit Ethernet LANs via dedicated PCI Express x1 lanes (Intel® I219LM (LAN1) and I211AT (LAN2)) that offer bandwidth of up to 500 MB/sec, eliminating the bottleneck of network data flow and incorporating Gigabit Ethernet at 1000 Mbps.

7.2 Features

- 10/100/1000Base-T Ethernet controller
- 10/100/1000Base-T triple-speed MAC
- Full duplex at 10, 100, or 1000 Mbps and half duplex at 10 or 100 Mbps
- Wake-on-LAN (WOL) support
- PCIe x1 host interface

7.3 Installation

Note!

The integrated Intel® gigabit Ethernet controller supports all major network operating systems. However, the installation procedure varies with different operating systems. In the following sections, refer to the one that provides the driver setup procedure for the operating system you are using.

7.4 Windows Driver Setup

Enter the Advantech support website, then search product AIMB-786. You can see "LAN" driver inside.

Chapter

SATA RAID Setup

8.1 Introduction

To support demanding disk I/O, Intel® Q370 chipset integrates five Serial ATA controllers with software RAID 0, 1, 5, 10 capabilities.

RAID 0 striping increases the storage performance and is designed to speed up data transfer rates for disk-intensive applications.

RAID 1 mirroring protects valuable data that might be lost in the event of a hard drive failure.

RAID 5 array contains three or more hard drives where the data is divided into manageable blocks called strips. Parity is a mathematical method for recreating data that was lost from a single drive, which increases fault-tolerance. The data and parity are striped across all the hard drives in the array. The parity is striped in a rotating sequence to reduce bottlenecks associated with the parity calculations.

RAID 10 array uses four hard drives to create a combination of RAID levels 0 and 1. The data is striped across a two-drive array forming the RAID 0 component. Each of the drives in the RAID 0 array is then mirrored by a RAID 1 component.

8.2 SATA RAID Driver and Utility Setup

Enter the Advantech support website, then search product AIMB-786. You can see "Others" folder containing the RST driver.

Chapter

9

HD Audio

9.1 Introduction

AIMB-786 is equipped with a Realtek ALC892 Audio chip. It provides "Line-out" & "Microphone" ports for varying applications.

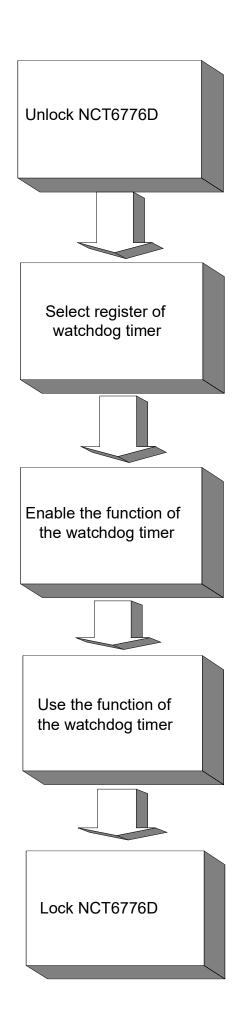
9.2 Installation

Enter the Advantech support website, then search for product AIMB-786. You can see "Audio" drivers inside.

Appendix A

Programming the Watchdog Timer

The AIMB-786's watchdog timer can be used to monitor system software operations and take corrective action if the software fails to function within the programmed period. This section describes the operation of the watchdog timer and how to program it.


A.1 Watchdog timer overview

The watchdog timer is built in to the super I/O controller NCT6776D. It provides the following functions for user programming:

- Can be enabled and disabled via the user's program.
- The timer can be set from 1 to 255 seconds/minutes.
- Generates an interrupt or reset signal if the software fails to reset the timer before time-out.

A.2 Programming the Watchdog Timer

The I/O port address of the watchdog timer is 2E (hex) and 2F (hex). 2E (hex) is the address port. 2F (hex) is the data port. You must first write an address value into address port 2E (hex), and then write/read data to/from the assigned register through data port 2F (hex).

Table A.1:	Watchde	og timer registers	
Address of register (2E)	Read/ Write	Value (2F) & description.	
87 (hex)	-	Write this address to I/O address port 2E (hex) twice to unlock the NCT6776D.	
07 (hex)	write	Write 08 (hex) to select register of watchdog timer.	
30 (hex)	write	Write 01 (hex) to enable the function of the watchdog timer. Disabled is set as default.	
F5 (hex)	write	Set seconds or minutes as units for the timer. Write 0 to bit 3: set seconds as counting unit. [default]. Write 1 to bit 3: set minutes as counting unit. Write 1 to bit 4: Watchdog timer count mode is 1000 times faster. If bit 3 is 0, the count mode is 1/1000 seconds mode. If bit 3 is 1, the count mode is 1/1000 minutes mode.	
F6 (hex)	0: stop timer [default] 01 ~ FF (hex): The amount of the count, in seconds or minute depends on the value set in register F5 (hex). This number de how long the watchdog timer waits for strobe before generatir interrupt or reset signal. Writing a new value to this register careset the timer to count with the new value.		
F7 (hex)	read/ write	Bit 6: Write 1 to enable keyboard to reset the timer, 0 to disable.[default] Bit 5: Write 1 to generate a timeout signal immediately and automatically return to 0. [default=0] Bit 4: Read status of watchdog timer, 1 means timer is "timeout".	
AA (hex)	-	Write this address to I/O port 2E (hex) to lock NCT6776D.	

A.2.1 Example Programs

Enable watchdog timer and set 10 seconds as the timeout interval

Mov dx,2eh; Unlock NCT6776D Mov al,87h Out dx,al Out dx,al Mov al,07h; Select registers of watchdog timer Out dx,al Inc dx in al,dx Or al,08h Out dx,al Dec dx; Enable the function of watchdog timer Mov al,30h Out dx,al Inc dx Mov al,01h Out dx,al

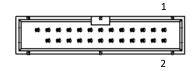
Dec dx; Set second as counting unit Mov al,0f5h Out dx,al Inc dx In al,dx And al,not 08h Out dx,al ;
Dec dx; Set timeout interval as 10 seconds and start counting Mov al,0f6h Out dx,al Inc dx Mov al,10; 10 minutes Out dx,al :
Dec dx; lock NCT6776D Mov al,0aah Out dx,al Enable watchdog timer and set 5 minutes as the timeout interval ;
Mov dx,2eh ; unlock NCT6776D Mov al,87h Out dx,al Out dx,al
; Mov al,07h; Select registers of watchdog timer Out dx,al Inc dx In al,dx Or al,08h Out dx,al
; Dec dx; Enable the function of watchdog timer Mov al,30h Out dx,al Inc dx Mov al,01h Out dx,al
; Dec dx; Set minute as counting unit Mov al,0f5h Out dx, al Inc dx In al,dx Or al, 08h

Out dx,al :
Dec dx; Set timeout interval as 5 minutes and start counting Mov al,0f6h Out dx,al Inc dx Mov al,5; 5 minutes Out dx,al ;
Dec dx ; lock NCT6776D Mov al,0aah Out dx,al Enable watchdog timer to be reset by mouse ;
Mov dx,2eh ; unlock NCT6776D Mov al,87h Out dx,al Out dx,al :
Mov al,07h; Select registers of watchdog timer Out dx,al Inc dx Mov al,08h Out dx,al
; Dec dx; Enable the function of watchdog timer Mov al,30h Out dx,al Inc dx In al,dx Or al,01h Out dx,al
; Dec dx ; Enable watchdog timer to be reset by mouse Mov al,0f7h Out dx,al Inc dx In al,dx Or al,80h Out dx,al
;Dec dx ; lock NCT6776D Mov al,0aah Out dx,al

Enable watchdog timer to be reset by keyboard

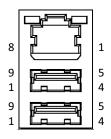
;
Mov dx,2eh ; unlock NCT6776D Mov al,87h Out dx,al Out dx,al ;
Mov al,07h; Select registers of watchdog timer Out dx,al Inc dx Mov al,08h Out dx,al ;
Dec dx; Enable the function of watchdog timer Mov al,30h Out dx,al Inc dx Mov al,01h Out dx,al ;
Dec dx; Enable watchdog timer to be strobed reset by keyboard Mov al,0f7h Out dx,al Inc dx In al,dx Or al,40h Out dx,al
; Dec dx ; lock NCT6776D Mov al,0aah Out dx,al Generate a time-out signal without timer counting
; Mov dx,2eh ; unlock NCT6776D Mov al,87h Out dx,al Out dx,al
; Mov al,07h; Select registers of watchdog timer Out dx,al Inc dx Mov al,08h Out dx,al
; Dec dx ; Enable the function of watchdog timer Mov al,30h

Out dx,al Inc dx In al,dx Or al,01h Out dx,al Dec dx ; Generate a time-out signal Mov al,0f7h Out dx,al; Write 1 to bit 5 of F7 register Inc dx In al,dx Or al,20h Out dx,al


Dec dx; lock NCT6776D

Mov al,0aah Out dx,al

Appendix B

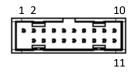

I/O Pin Assignments

B.1 Parallel Port (LPT1)

Table B.1	: Parallel Port (LPT1)		
Pin	Signal	Pin	Signal
1	STROBE#	14	AUTO-LINEFEED#
2	DATA0	15	ERROR#/FAULT#
3	DATA1	16	INITIALIZE#
4	DATA2	17	SELECT-PRINTER#/SELECT-IN#
5	DATA3	18	GND
6	DATA4	19	GND
7	DATA5	20	GND
8	DATA6	21	GND
9	DATA7	22	GND
10	ACK#	23	GND
11	BUSY	24	GND
12	PAPER-OUT/PAPER-END	25	GND
13	SELECT		

B.2 LAN Port and USB 3.1 Port (LAN1_USB3C1, LAN2_USB3C2)

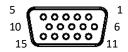
Table B.2: LAN Port (LAN1, LAN2)					
Pin	Signal	Pin	Signal		
1	DA+	5	DC+		
2	DA-	6	DC-		
3	DB+	7	DD+		
4	DB-	8	DD-		


Table B.3: USB 3.1 Port (USB3C1, USB3C2)			
Pin	Signal		
1	+5V		
2	D-		
3	D+		
4	GND		
5	STDA_SSRX-		
6	STDA_SSRX+		
7	Shield GND_DRAIN		
8	STDA_SSTX-		
9	STDA_SSTX+		

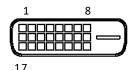
B.3 USB 2.0 Port (USB2C1, USB2A1)

Table B.4: USB 2.0 Port (USB2C1, USB2A1)			
Pin	Signal		
1	+5V		
2	D-		
3	D+		
4	GND		

B.4 USB 3.1 Header (USB3H1)


Table B.5: USB 3.1 Header (USB3H1)				
Pin	Signal	Pin	Signal	
1	+5V	2	STDA_SSRX-	
3	STDA_SSRX+	4	GND	
5	STDA_SSTX-	6	STDA_SSTX+	
7	GND	8	D-	
9	D+	10	OC#	
11	D+	12	D-	
13	GND	14	STDA_SSTX+	
15	STDA_SSTX-	16	GND	
17	STDA_SSRX+	18	STDA_SSRX-	
19	+5V			

B.5 USB 2.0 Header (USB2H2)


Table B.6: USB 2.0 Header (USB2H2)				
Pin	Signal	Pin	Signal	
1	+5V	2	+5V	
3	D-	4	D-	
5	D+	6	D+	
7	GND	8	GND	
9	N/A	10	N/C	

B.6 VGA Connector (VGA1)

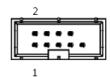
Table B.7: VGA Connector (VGA1)				
Pin	Signal	Pin	Signal	
1	RED	9	KEY/PWR	
2	GREEN	10	GND	
3	BLUE	11	ID0/RES	
4	ID2/RES	12	ID1/SDA	
5	GND	13	HSYNC	
6	RED_RTN	14	VSYNC	
7	GREEN_RTN	15	ID3/SCL	
8	BLUE_RTN			

B.7 DVI-D Connector (**DVI1**)

Table B.8: DVI-D Connector (DVI1)				
Pin	Signal	Pin	Signal	
1	TMDS Data 2-	13	GND	
2	TMDS Data 2+	14	+5V	
3	TMDS Data 2/4 shield	15	GND	
4	GND	16	Hot plug detect	

Table B.8: D	VI-D Connector (DVI1)		
5	GND	17	TMDS data 0-
6	DDC clock	18	TMDS data 0+
7	DDC data	19	TMDS data 0/5 shield
8	NC	20	GND
9	TMDS Data 1-	21	GND
10	TMDS Data 1+	22	TMDS clock shield
11	TMDS Data 1/3 shield	23	TMDS clock+
12	GND	24	TMDS clock-

B.8 DisplayPort Connector (DP1)


Pin	Signal	Pin	Signal
1	TMDS D2+	11	GND
2	GND	12	TMDS CLK-
3	TMDS D2-	13	N/C
4	TMDS D1+	14	N/C
5	GND	15	SCL
3	TMDS D1-	16	SDA
7	TMDS D0+	17	GND
8	GND	18	VCC (+5V)
9	TMDS D0-	19	Hot plug detect
0	TMDS CLK+		

B.9 RS-232 and COM3 Interface (COM1 ~ COM6)

Table B.10: RS-232 DB-9 Connector (COM1)		
Pin	Signal	
1	DCD	
2	RXD	
3	TXD	
4	DTR	
5	GND	

Table B.	10: RS-232 DB-9 Connecto	r (COM1)
6	DSR	
7	RTS	
8	CTS	
9	RI	

Table B.11:	: RS-232 Header (COM2,	COM4 ~ COM6)
Pin	Signal	
1	DCD	
2	DSR	
3	RXD	
4	RTS	
5	TXD	
6	CTS	
7	DTR	
8	RI	
9	GND	

Table B.12: RS-232	2/422/485 Header (COM3)
Pin	Signal
1	422/485 TX-
2	DSR
3	422/485 TX+
4	RTS
5	RX+
6	CTS
7	RX-
8	RI
9	GND

B.10 External Keyboard and Mouse Connector (KBMS1)

Table B.13: External Keyboard and Mouse Connector (KBMS1)	
Pin	Signal
1	KB CLK
2	KB DATA
3	MS DATA
4	GND
5	KB/MS +5V
6	MS CLK

B.11 CPU and System Fan Power Connector (CPUFAN1, SYSFAN1 ~ SYSFAN3)

Table B.14: CPU a SYSFAN1 ~ SYSFA	nd System Fan Power Connector (CPUFAN1, AN3)
Pin	Signal
1	GND

1 GND
2 +12 V
3 SENSE
4 PWM

B.12 Power LED and Keyboard Lock (JFP3)

Table B.15: Power LED and Keyboard Lock (JFP3)	
Pin	Function
1	POWER_LED+
2	N/C
3	GND
4	KEYLOCK#
5	GND

B.13 External Speaker Connector (JFP2)

Table B.16: External Speaker Connector (JFP2)	
Pin	Function
1	EXTENAL_SPK_P1
4	EXTENAL_SPK_2
7	INTENAL_SPK_P3
10	INTENAL_SPK_P4

B.14 HDD LED Connector (JFP2)

2 5 **E**

Table B.17: HDD LED Connector (JFP2)	
Pin	Signal
2	HDD_LED+
5	HDD_LED-

B.15 SMBus Connector (JFP2)

8 11

Table B.18: SMBus Connector (JFP2)		
Pin	Signal	
8	SMB_SNMP_SDAT	
11	SMB_SNMP_SCLK	

B.16 ATX Soft Power Switch (JFP1)

3 6 **E**

Table B.19: ATX Soft Power Switch (JFP1)		
Pin	Signal	
3	PANSWIN#	
6	GND	

B.17 Reset Connector (JFP1)

9 12

Table B.20: Reset Connector (JFP1)		
Pin	Signal	
9	SYSTEM RESET#	
12	GND	

B.18 8-pin Alarm Board Connector (VOLT1)

Table B.21: 8-pin Alarm Board Connector (VOLT1)				
Pin	Signal	Pin	Signal	
1	+5V_STBY	5	+5 V	
2	GND	6	+3.3 V	
3	GND	7	-12 V	
4	-5 V	8	+12 V	

B.19 Case Open Connector (JCASE1)

Table B.22: Case Open Connector (JCASE1)			
Pin	Signal		
1	CASEOP		
2	GND		

B.20 Front Panel LAN Indicator Connector (LANLED1)

Table B.23: Front Panel LAN Indicator Connector (LANLED1)				
Pin	Signal	Pin	Signal	
1	LAN1_LED_ACT#	2	LAN2_LED_ACT#	
3	+3.3V	4	+3.3V	
5	LAN1_LED_1G#	6	LAN2_LED_1G#	
7	LAN1_LED_100M#	8	LAN2_LED_100M#	
9	+3.3V			

B.21 SPI Flash Connector (SPI_CN1)

Table B.24: SPI Flash Connector (SPI_CN1)				
Pin	Signal	Pin	Signal	
1	+V3.3V	2	GND	
3	CS#	4	CLK	
5	MISO	6	MOSI	
7	N/A	8	N/C	

B.22 Low Pin Count Connector (LPC1)

Table B.25: Low Pin Count Connector (LPC1)				
Pin	Signal	Pin	Signal	
1	CLK (24MHz)	2	AD1	
3	RESET#	4	AD0	
5	FRAME#	6	+3.3V	
7	AD3	8	GND	
9	AD2	10	SMB CLK	
11	SERIRQ	12	SMB DAT	
13	+5V_DUAL	14	+5V	

B.23 GPIO Connector (GPIO1)

Table B.26: GPIO Connector (GPIO1)				
Pin	Signal	Pin	Signal	
1	GPIO0	2	GPIO4	
3	GPIO1	4	GPIO5	
5	GPIO2	6	GPIO6	
7	GPIO3	8	GPIO7	
9	+5V_DUAL_GPIO	10	GND	

B.24 SMBus Connector (SMBUS1)

Table B.27: SMBus Connector (SMBUS1)			
Pin	Signal		
1	+V5		
2	SMB CLK		
3	SMB DAT		
4	GND		

B.25 Front Panel Audio Connector (FPAUD1)

Table B.28: Front Panel Audio Connector (FPAUD1)		
Pin	Signal	
1	MIC-L	
2	GND	
3	MIC-R	
4	PRESENSE#	
5	LINE-R	
6	MIC-JD	
7	SENSE	
8	N/A	
9	LINE-L	
10	LINE-JD	

B.26 Watchdog Timer Output and HW Monitor Alarm (JWDT1+JOBS1)

Table B.29: Watchdog Timer Output and HW Monitor Alarm (JWDT1+JOBS1)				
Pin	Signal	Pin	Signal	
1	+5V	6	SYSTEM RESET#	
2	N/C	7	GND	
3	N/C	8	ERROR_BEEP	
4	WG#	9	IR TXD	
5	IR RXD	10	OBS_BEEP	

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission from the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Advantech Co., Ltd. 2020

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

 Phone:
 +1 631 5804360

 E-Mail:
 info@apollodisplays.com

 Internet:
 www.apollodisplays.com