

OUR GLOBAL COMPETENCE CENTRES

Manual

Congatec

conga-SA7

SMARC™2.1 Computer-on-Module with Intel® Elkhard Lake Processor

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

SMARC® conga-SA7

SMARC 2.1 module based on Intel® Atom®, Pentium® and Celeron® Elkhart Lake SoC

User's Guide

Revision 1.00

Revision History

Revision	Date (yyyy-mm-dd)	Author	Changes
0.1	2021-04-22	AEM	Preliminary release
1.00	2021-09-28	AEM	 Added Software License Information Removed product variant with part number 050122 from table 1 "Commercial Variants" and table 5 "Power Consumption Values" Corrected the Operating System used for measuring power consumption Updated table 5 "Power Consumption Values" and table 6 "CMOS Battery Power Consumption" Added section 6.2 "eMMC" Updated section 6.6 "congatec Battery Management Interface" Added section 9 "System Resources" Official release

Preface

This user's guide provides information about the components, features, connectors and BIOS Setup menus available on the conga-SA7. It is one of three documents that should be referred to when designing a SMARC® application. The other reference documents that should be used include the following:

SMARC® Design Guide 2.0 SMARC® Specification 2.1

The links to the SMARC® documents can be found on the SGET website at www.sget.org.

Software Licenses

Notice Regarding Open Source Software

The congatec products contain Open Source software that has been released by programmers under specific licensing requirements such as the "General Public License" (GPL) Version 2 or 3, the "Lesser General Public License" (LGPL), the "ApacheLicense" or similar licenses.

You can find the specific details at https://www.congatec.com/en/licenses/. Search for the revision of the BIOS/UEFI or Board Controller Software (as shown in the POST screen or BIOS setup) to get the complete product related license information. To the extent that any accompanying material such as instruction manuals, handbooks etc. contain copyright notices, conditions of use or licensing requirements that contradict any applicable Open Source license, these conditions are inapplicable.

The use and distribution of any Open Source software contained in the product is exclusively governed by the respective Open Source license. The Open Source software is provided by its programmers without ANY WARRANTY, whether implied or expressed, of any fitness for a particular purpose, and the programmers DECLINE ALL LIABILITY for damages, direct or indirect, that result from the use of this software.

OEM/ CGUTL BIOS

BIOS/UEFI modified by customer via the congatec System Utility (CGUTL) is subject to the same license as the BIOS/UEFI it is based on. You can find the specific details at https://www.congatec.com/en/licenses/.

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec GmbH provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec GmbH assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide.

In no event shall congatec GmbH be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec GmbH designs are created from lead-free components and are completely RoHS compliant.

Electrostatic Sensitive Device

All congatec GmbH products are electrostatic sensitive devices. They are enclosed in static shielding bags, and shipped enclosed in secondary packaging (protective packaging). The secondary packaging does not provide electrostatic protection.

Do not remove the device from the static shielding bag or handle it, except at an electrostatic-free workstation. Also, do not ship or store electronic devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original packaging. Be aware that failure to comply with these guidelines will void the congatec GmbH Limited Warranty.

Symbols

The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Copyright Notice

Copyright © 2021, congatec GmbH. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec GmbH.

congatec GmbH has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec GmbH, our products, or our website.

Warranty

congatec GmbH makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec GmbH may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congatec GmbH represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congatec's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec GmbH prior to returning the non conforming product freight prepaid. congatec GmbH will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec GmbH shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

Certification

congatec GmbH is certified to DIN EN ISO 9001 standard.

Technical Support

congatec GmbH technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com.

Terminology

Term	Description
GB	Gigabyte
GHz	Gigahertz
kB	Kilobyte
MB	Megabyte
MT/s	Mega-transfers per second
Mbit	Megabit
kHz	Kilohertz
MHz	Megahertz
TDP	Thermal Design Power
cBC	congatec Board Controller
PCle	PCI Express
SATA	Serial ATA
PEG	PCI Express Graphics
PCH	Platform Controller Hub
eDP	Embedded DisplayPort
DDI	Digital Display Interface
HDA	High Definition Audio
N.C	Not connected
N.A	Not available
T.B.D	To be determined

Contents

1	Introduction	11	5.6	Audio (HDA)	
1.1	SMARC® Concept	11	5.7	SD Card	
1.2	conga-SA7 Options Information		5.8	UART	
1.2.1	Options Information		5.9	GPIO	
	·		5.10	SPI	
2	Specifications	13	5.11	I2C	
2.1	Feature List	13	5.12	Power Control	31
2.2	Supported Operating Systems	14	6	Additional Features	34
2.3	Mechanical Dimensions	14			
2.4	Standard Power	15	6.1	Optional Onboard Interfaces	
2.4.1	Supply Voltage	15	6.2	eMMC	
2.4.2	Electrical Characteristics		6.3	Security Features	
2.4.3	Rise Time	15	6.4	congatec Board Controller (cBC)	
2.5	Power Consumption	16	6.4.1	Board Information	
2.6	Supply Voltage Battery Power		6.4.2	General Purpose Input/Output	
2.7	Environmental Specifications		6.4.3	Fan Control	
	·		6.4.4	Power Loss Control	
3	Block Diagram	19	6.4.5	Watchdog	
1	Caaliaa Calutiana	20	6.4.6	Enhanced Soft-Off State	
4	Cooling Solutions	20	6.5	OEM BIOS Customization	
4.1	CSP Dimensions	21	6.5.1	OEM Default Settings	
4.2	CSP Dimensions	22	6.5.2	OEM Boot Logo	
4.3	HSP Dimensions	23	6.5.3	OEM POST Logo	
4.4	HSP Dimensions	24	6.5.4	OEM BIOS Code/Data	
5	Connector Rows	25	6.5.5	OEM DXE Driver	
3	Connector Rows	23	6.6	congatec Battery Management Interface	
5.1	PCI Express™	25	6.7	API Support (CGOS)	38
5.1.1	Possible Reference Clock Configuration	25	6.8	congatec System Sensors	38
5.2	Display Interfaces	26	6.9	Suspend to Ram	38
5.2.1	LVDS	27	7	conga Tech Notes	30
5.2.2	HDMI	27			
5.2.3	DP ++	28	7.1	Intel® Elkhart Lake SoC Features	
5.3	SATA	28	7.1.1	Processor Core	
5.4	Gigabit Ethernet	28	7.1.1.1	Intel® Virtualization Technology	39
5.5	USB		7.1.1.2	AHCI	40
			7.1.1.3	Thermal Management	40

'.2 '.3	ACPI Suspend Modes and Resume EventsUSB Port Mapping	
3	Signal Descriptions and Pinout Tables	43
)	System Resources	65
2.1	I/O Address Assignment	65
2.2	PCI Configuration Space Map	
9.3	I ² C Bus and SMBus	
0	BIOS Setup Description	68
0.1	Navigating the BIOS Setup Menu	68
0.2	BIOS Versions	
0.3	Updating the BIOS	68
0.3.1	Update from External Flash	
0.4	Supported Flash Devices	

List of Tables

Table 1	Commercial Variants	12
Table 2	Industrial Variants	12
Table 3	Feature Summary	13
Table 4	Measurement Description	16
Table 5	Power Consumption Values	17
Table 6	CMOS Battery Power Consumption	17
Table 7	Cooling Solution Variants	20
Table 8	PCIe Reference Clock Configuration	25
Table 9	Display Combination	26
Table 10	Possible USB Port Mapping	29
Table 11	Wake Events	41
Table 12	Signal Tables Terminology Descriptions	43
Table 13	SMARC Edge Finger Pinout	44
Table 14	LVDS Signal Description	49
Table 15	HDMI Signal Descriptions	52
Table 16	DisplayPort++	53
Table 17	MIPI CSI-2/-3	53
Table 18	SDIO Signal Descriptions	54
Table 19	SPIO Signal Descriptions	
Table 20	eSPI/SPI1 Signal Descriptions	55
Table 21	I2S Signal Descriptions	
Table 22	HDA / I2S Signal Descriptions	56
Table 23	I2C Signal Descriptions	56
Table 24	Asynchronous Serial Port Signal Description	
Table 25	USB Pinout Description	57
Table 26	PCle Signal Description	58
Table 27	SERDES Signal Description	59
Table 28	SATA Signal Description	
Table 29	Gigabit Ethernet Signal Description	60
Table 30	Watchdog Signal Description	60
Table 31	GPIO Signal Description	61
Table 32	Management Pins Signal Description	
Table 33	Boot Select Signal Description	
Table 34	Power and GND Signal Descriptions	
Table 35	I/O Address Assignment	
Table 36	Bus Accessibility	67

1 Introduction

1.1 SMARC® Concept

The Standardization Group for Embedded Technologies e.V (SGET) defined the SMARC standard for small form factor computer modules that target applications with ultra low power, low cost and high performance. The SMARC connector and interfaces are optimized for high-speed communication, and are suitable for ARM SoCs and low power x86 SoCs.

The SMARC standard bridges the gap between the COM Express standard and the Qseven standard by offering most of the interfaces defined in the COM Express specification at a lower power. With a footprint of 82 mm x 50 mm or 82 mm x 80 mm, the SMARC standard promotes the design of highly integrated, energy efficient systems.

Due to its small size and lower power demands, PC appliance designers can design low cost devices as well as explore a huge variety of product development options—from compact space-saving designs to fully functional systems. This solution allows scalability, product diversification and faster time to market.

1.2 conga-SA7 Options Information

The conga-SA7 design is based on the SMARC 2.1 Specification. The conga-SA7 features the Intel® Atom®, Pentium® and Celeron® Elkhart Lake SoCs. With maximum 12 W TDP, the conga-SA7 offers Ultra Low Power boards with high computing performance and outstanding graphics. Additionally, the conga-SA7 supports quad channel LPDDR4x memory with up 16 GB capacity and data rates up to 4267 MT/s, multiple I/O interfaces, up to three independent displays and various congatec embedded features.

By offering most of the functional requirement for any SMARC application, the conga-SA7 provides manufacturers and developers with a platform to jump-start the development of systems and applications based on SMARC specification. Its features and capabilities make it an ideal platform for designing compact, energy-efficient, performance-oriented embedded systems.

1.2.1 Options Information

The conga-SA7 is available in eight variants (five commercial and three industrial). The table below shows the different configurations available.

Table 1 Commercial Variants

Part-No	050100	050101	050102	050120	050121
Processor	Intel® Atom® x6425E	Intel® Atom® x6413E	Intel® Atom® x6211E	Intel® Pentium® J6426	Intel® Celeron® J6413
	2.0 GHz, Quad Core	1.5 GHz, Quad Core	1.3 GHz, Dual Core	2.0 GHz, Quad Core	1.8 GHz, Quad Core
Burst Freq.	3.0 GHz	3.0 GHz	3.0 GHz	3.0 GHz	3.0 GHz
L2 Cache	1.5 MB	1.5 MB	1.5 MB	1.5 MB	1.5 MB
Graphics Engine	Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics
GFX Base/Burst Freq.	500 / 750 MHz	500 / 750 MHz	350 / 750 MHz	400 / 850 MHz	400 / 800 MHz
Onboard Memory	16 GB, 3200 MT/s	8 GB, 3200 MT/s	4 GB, 3200 MT/s	16 GB, 3200 MT/s	8 GB, 3733 MT/s
(LPDDR4x)	quad channel	quad channel	quad channel	quad channel	quad channel
eMMC	64 GB	32 GB	32 GB	64 GB	32 GB
Wifi/BT Module	N.A	N.A	N.A	N.A	N.A
TPM (Discrete)	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670
SD Card	1x 4-bit	1x 4-bit	1x 4-bit	1x 4-bit	1x 4-bit
Max. TDP	12 W	9 W	6 W	10 W	10 W

Table 2 Industrial Variants

Part-No	050110	050111	050112
Processor	Intel® Atom® x6425RE	Intel® Atom® x6414RE	Intel® Atom® x6212RE
	1.9 GHz, Quad Core	1.5 GHz, Quad Core	1.2 GHz, Dual Core
Burst Freq.	N.A	N.A	N.A
L2 Cache	1.5 MB	1.5 MB	1.5 MB
Graphics Engine	Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics
GFX Base/Burst Freq.	400 MHz/ N.A	400 MHz/ N.A	350 MHz/ N.A
Onboard Memory	8 GB, 4267 MT/s	4 GB, 3200 MT/s	4 GB, 3200 MT/s
(LPDDR4x)	quad channel	quad channel	quad channel
eMMC	32 GB	32 GB	32 GB
Wifi/BT Module	N.A	N.A	N.A
TPM (Discrete)	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670
SD Card	1x 4-bit	1x 4-bit	1x 4-bit
Max. TDP	12 W	9 W	6 W

2 Specifications

2.1 Feature List

Table 3 Feature Summary

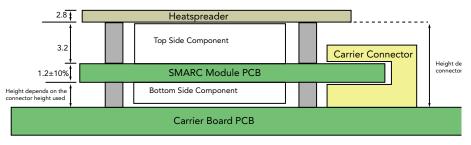
Form Factor	SMARC® form factor specification, revision 2.1 (82 mm x 50 mm)					
SoC	Intel® Atom®, Pentium® and Celeron SoCs					
Memory	Onboard non-ECC LPDDR4x memory. Supports - data rates up to 4267 MT/s - up to 16 GB capacity - in-band ECC (out of band ECC is not supported)					
Chipset	Integrated in the SoC					
Audio	Intel High Definition Audio					
Ethernet	2x Gigabit Ethernet via TI DP83867CS/IS Ethernet PHY	(with TSN support)				
Graphics Options	Intel® UHD (Gen 11). Supports: - API (DirectX 12.1, OpenGL 4.5, OpenCL 1.2, OpenGL ES 3.1, Vulkan 1.0) - Intel® QuickSync & Clear Video Technology HD (hardware accelerated video decode/encode/processing/transcode) - up to 3 independent displays (must be two DDI's and one LVDS/eDP/DSI)					
	1x LVDS (dual channel) 1x DP++ 1x HDMI 2.0b (native)	Optional Interface (assembly option): - 1x eDP 1.3 ¹ or 1x MIPI-DSI (x4 lane) ¹ - 1x DP++ (DDI1) ²				
Peripheral Interfaces	1x SATA® 6 Gb/s Up to 4x PCle® Gen3 ports 6x USB 2.0 (1x USB dual role) 2x USB 3.1 Gen 2 (1x USB dual role) 4x UART (two with handshake signals) 1x SD/SDIO	2x I ² C 1x HDA 2x SPI (1x eSPI and 1x SPI) Optional Interface (assembly option) : - M.2 1216 Wi-Fi/BT module ³				
Mass Storage	eMMC 5.1 onboard flash					
BIOS	AMI Aptio® V UEFI 2.x firmware 32 MB serial SPI with congatec Embedded BIOS features					
congatec Board Controller	Multi-stage watchdog, non-volatile user data storage, manufacturing and board information, board statistics, hardware monitoring, fan control, I2C bus, Power loss control					
Power Mgmt.	ACPI 5.0 compliant with battery support S5e mode (see section 6.3.6 "Enanced Soft-Off State") Also supports Suspend to RAM (S3) Configurable TDP					
Security	Discrete SPI TPM 2.0 (Infineon SLB9670VQ2.0)					

- ^{1.} No LVDS support with this option
- ^{2.} No HDMI support with this option
- 3. Not available by default

2.2 Supported Operating Systems

The conga-SA7 supports the following operating systems:

- Microsoft® Windows® 10 IoT Enterprise (64-bit)
- Linux Ubuntu (64-bit)
- Android 10 (64-bit)
- Yocto (64-bit)
- RTS Hypervisor

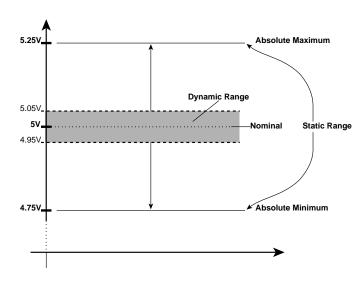

We do not offer installation support for systems with less than 20 GB storage space.

2.3 Mechanical Dimensions

The conga-SA7 has the following dimensions:

- length of 82 mm
- width of 50 mm

The overall height (module, heatspreader and stack) is shown below:



All dimensions are in millimeters

2.4 Standard Power

2.4.1 Supply Voltage

The conga-SA7 provides a supply voltage range of 4.75 V - 5.25 V.

2.4.2 Electrical Characteristics

Characteristics			Min.	Тур.	Max.	Units	Comment
5V	Voltage	± 5%	4.75	5.00	5.25	Vdc	
	Ripple		-	-	± 50	mV _{PP}	0-20MHz
	Current						

2.4.3 Rise Time

The input voltages shall rise from 10 percent of nominal to 90 percent of nominal at a minimum slope of 250 V/s. The smooth turn-on requires that, during the 10 percent to 90 percent portion of the rise time, the slope of the turn-on waveform must be positive.

2.5 Power Consumption

The power consumption values were measured with the following setup:

- Input voltage +5 V
- conga-SA7 COM
- conga-SEVA carrier board
- conga-SA7 cooling solution
- Microsoft® Windows® 10 IoT Enterprise

Table 4 Measurement Description

The power consumption values were recorded during the following system states:

System State	Description	Comment
S0: Minimum value	Lowest frequency mode (LFM) with minimum core voltage during desktop idle	
S0: Maximum value	Highest frequency mode (HFM/Turbo Boost)	The CPU was stressed to its maximum frequency
S0: Peak value	Highest power spike during the measurement of "S0: Maximum value". This state shows the peak value over a short period of time (worst case power consumption value)	Consider this value when designing the system's power supply to ensure that sufficient power is supplied during worst case scenarios
S3	COM is powered by VCC_5V, while in Suspend to RAM state	
S5	COM is powered by VCC_5V, while in Soft-Off state	
S5e	COM is powered by VCC_5V, while in enhanced Soft-Off state	

The peripherals did not influence the measured values because they were powered externally.

Table 5 Power Consumption Values

The table below provides additional information about the conga-SA7 power consumption. The values were recorded at various operating mode.

Part	Memory	H.W	BIOS	OS (64 bit)	CPU					Current (A)		
No.	Size	Rev.	Rev.		Variant	Cores	Freq. /Max. Turbo	S0: Min	S0: Max	S0: Peak	S3	S5	S5e
050100	16 GB	B.3	SA70R007	Windows 10	Intel® Atom® x6425E	4	2.0 / 3.0 GHz	1.28	4.50	6.02	0.36	0.34	0.002
050101	8 GB	B.3	SA70R007	Windows 10	Intel® Atom® x6413E	4	1.5 / 3.0 GHz	1.28	3.70	5.60	0.36	0.34	0.002
050102	4 GB	B.3	SA70R007	Windows 10	Intel® Atom® x6211E	2	1.3 / 3.0 GHz	1.26	2.76	4.58	0.38	0.34	0.002
050110	8 GB	B.3	SA70R007	Windows 10	Intel® Atom® x6425RE	4	1.9 GHz/ N.A	1.28	2.98	3.22	0.38	0.34	0.002
050111	4 GB	B.3	SA70R007	Windows 10	Intel® Atom® x6414RE	4	1.5 GHz/ N.A	1.18	2.48	2.88	0.36	0.34	0.002
050112	4 GB	B.3	SA70R007	Windows 10	Intel® Atom® x6212RE	2	1.2 GHz/ N.A	1.08	1.80	2.22	0.36	0.34	0.002
050120	16 GB	B.3	SA70R007	Windows 10	Intel® Pentium® J6426	4	2.0 / 3.0 GHz	1.30	4.18	5.98	0.36	0.34	0.002
050121	8 GB	B.3	SA70R007	Windows 10	Intel® Celeron® J6413	4	1.8 / 3.0 GHz	1.42	4.06	5.82	0.36	0.34	0.002

With fast input voltage rise time, the inrush current may exceed the measured peak current.

2.6 Supply Voltage Battery Power

Table 6 CMOS Battery Power Consumption

RTC @	Voltage	Current
-10°C	3V DC	1.78 μΑ
20°C	3V DC	1.92 μΑ
70°C	3V DC	2.62 µA

- 1. Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.
- 2. Measure the CMOS battery power consumption in your customer specific application in worst case conditions (for example, during high temperature and high battery voltage).
- 3. Consider the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9_RTC_Battery_Lifetime.pdf on congatec GmbH website at www.congatec.com/support/application-notes.
- 4. We recommend to always have a CMOS battery present when operating the conga-SA7

2.7 Environmental Specifications

Temperature (commercial variants)

Operation: 0° to 60°C

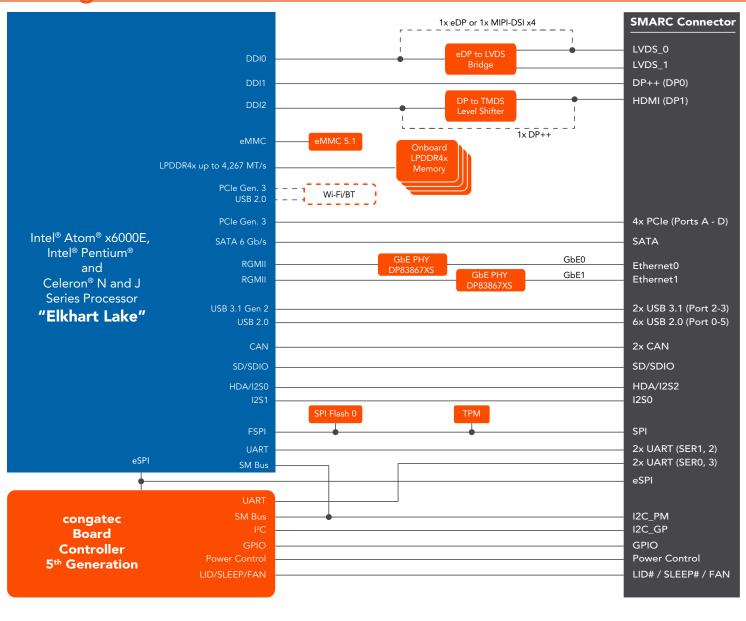
Storage: -20° to +80°C

Temperature (industrial variants)

Operation: -40° to 85°C

Storage: -40° to +85°C

Humidity Operation: 10% to 90% Storage: 5% to 95%



Caution

The above operating temperatures must be strictly adhered to at all times. When using a congatec heatspreader, the maximum operating temperature refers to any measurable spot on the heatspreader's surface.

Humidity specifications are for non-condensing conditions.

3 Block Diagram

Optional - Not available by default

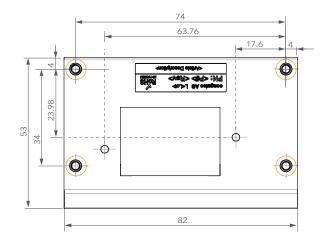
4 Cooling Solutions

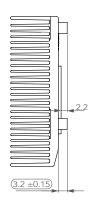
congatec GmbH offers the following cooling solutions for the conga-SA7 variants. The dimensions of the cooling solutions are shown in the sub-sections. All measurements are in millimeters.

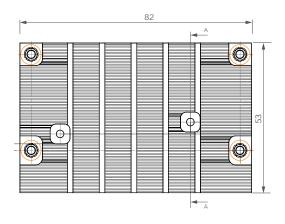
Table 7 Cooling Solution Variants

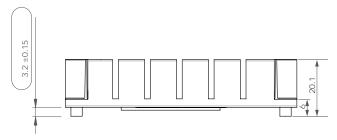
	Cooling Solution	Part No	Description
1	CSP	050150	Passive cooling with 2.7 mm bore-hole standoffs for lidded CPU variants (industrial variants)
		050153	Passive cooling with 2.7 mm bore-hole standoffs for bare-die CPU variants (commercial variants)
2	HSP	050151	Heatspreader with 2.7 mm bore-hole standoffs for lidded CPU variants (industrial variants)
		050152	Heatspreader with 2.7 mm bore-hole standoffs for bare-die CPU variants (commercial variants)

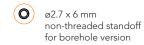
- 1. We recommend a maximum torque of 0.4 Nm for carrier board mounting screws and 0.5 Nm for module mounting screws.
- 2. The gap pad material used on congatec heatspreaders may contain silicon oil that can seep out over time depending on the environmental conditions it is subjected to. For more information about this subject, contact your local congatec sales representative and request the gap pad material manufacturer's specification.

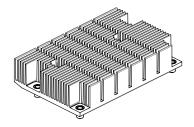

Caution

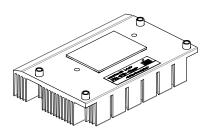

- 1. The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the module is maintained at all times. This may require additional cooling components for your final application's thermal solution.
- 2. For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the module. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.
- 3. For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.
- 4. Do not exceed the recommended maximum torque. Doing so may damage the module or the carrier board, or both.

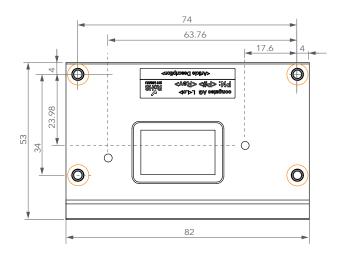


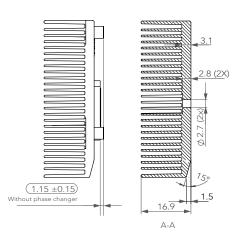

4.1 CSP Dimensions

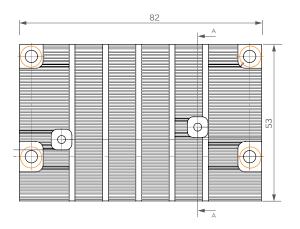

Lidded Variants (Industrial)

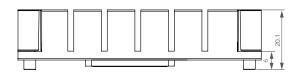




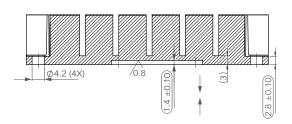


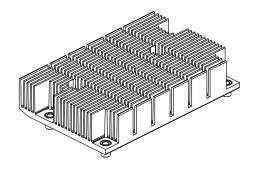


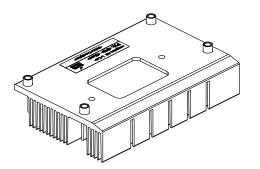


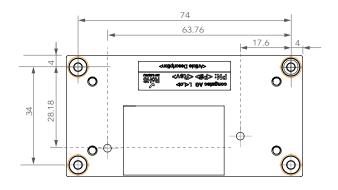

4.2 CSP Dimensions

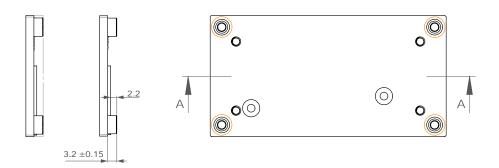
Bare-die Variants (Commercial)



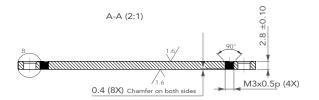


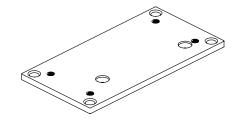


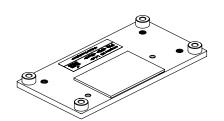




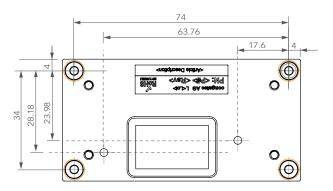
4.3 HSP Dimensions

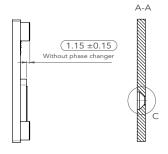

Lidded Variants (Industrial)

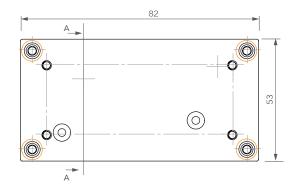


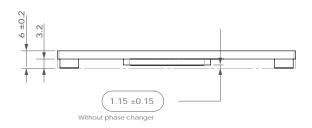


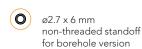
Ø2.7 x 6 mm non-threaded standoff for borehole version

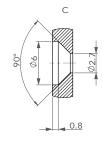


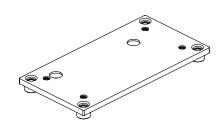


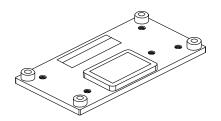



4.4 HSP Dimensions


Bare-die Variants (Commercial)







5 Connector Rows

The conga-SA7 has 314 edge fingers that mate with the MXM3 connector located on the carrier board. This connector is able to interface the signals on the conga-SA7 with the carrier board peripherals.

5.1 PCI Express™

The conga-SA7 offers up to four PCI Express™ lanes. The lanes support:

- up to 8 GT/s (Gen 3) speed
- a 4 x1 link configuration (default) 1,3
- a 1 x4 or 2 x2 or 1 x2 + 2 x1 link 2,3 configuration
- lane polarity inversion

- 1. Requires a clock buffer on the carrier board
- ^{2.} Possible only with a custom BIOS firmware
- ³ The conga-SA7 provides PCIe_A_REFCK, PCIe_B_REFCK and PCIe_C_REFCK reference clocks to the carrier board.

5.1.1 Possible Reference Clock Configuration

The conga-SA7 provides three PCIe reference clocks to the carrier board. The possible reference clock configuration is described in the table below.

Table 8 PCIe Reference Clock Configuration

PCIe Lanes to Carrier Board	Possible Link Configuration						
	Default (4 x1)	Option 1 (2x1 + 1 x2)	Option 2 (1 x2 + 2 x1)	Option 3 (2 x2)	Option 4 (1 x4)		
PCIe_A	PCIe_A_REFCK	PCIe_A_REFCK	PCIe_A_REFCK	PCIe_A_REFCK	PCIe_A_REFCK		
PCIe_B	PCIe_B_REFCK	PCIe_B_REFCK					
PCIe_C	PCIe_C_REFCK	PCIe_C_REFCK	PCIe_B_REFCK	PCIe_B_REFCK			
PCle_D	PCIe_C_REFCK via carrier buffer		PCIe_C_REFCK				

5.2 Display Interfaces

The conga-SA7 offers the following display interfaces:

- dual-channel LVDS
- native HDMI
- optional dual-mode DisplayPort (DP++)
- optional eDP or MIPI-DSI

The table below shows the display combination.

Table 9 Display Combination

	Display 1 (DDI0)		Display 2 (DDI1)		Display 3 (DDI2)	
	Interface	Max. Resolution	Interface	Max. Resolution	Interface	Max. Resolution
Default	LVDS	1920x1200 @ 60Hz (dual mode)	DP++	4096x2160 @ 60Hz	HDMI	4096x2160 @ 60Hz
Option 1	eDP or DSI	eDP: 3840x2160 @ 60 Hz DSI: 3200x2000 @ 60 Hz (1 x4 lane) or 4096x2304 @ 60 Hz (2 x4 lane)	DP++	4096x2160 @ 60Hz	HDMI	4096x2160 @ 60Hz
Option 2	LVDS or eDP or DSI	LVDS: 1920x1200 @ 60Hz (dual mode) eDP: 3840x2160 @ 60 Hz DSI: 3200x2000 @ 60 Hz (1 x4 lane) or 4096x2304 @ 60 Hz (2 x4 lane)	DP++	4096x2160 @ 60Hz	DP++	4096x2160 @ 60Hz

- 1. The resolutions in table 9 apply when multiple displays are connected.
- 2. If eDP is the only active display, the eDP resolution is 4096x2160 @ 60Hz
- 3. If MIPI-DSI is the only active display, the resolution with compression is 5120x3200 @ 60 Hz.

5.2.1 LVDS

The conga-SA7 offers an LVDS interface. The interface supports the following:

- single- or dual-channel LVDS (color depths of 18 bpp or 24 bpp)
- integrated flat panel interface with clock frequency up to 112 MHz
- VESA and OpenLDI LVDS color mappings
- automatic panel detection via Embedded Panel Interface based on VESA EDID™ 1.3
- resolution up to 1920x1200 in dual LVDS bus mode

- 1. LVDS channel A (first channel) supports an optional eDP or MIPI-DSI x4 interface (assembly option).
- 2. Variants with optional eDP or MIPI DSI interface do not support LVDS interface
- 3. Only one MIPI DSI panel is supported (one channel, with up to four lanes)

5.2.2 HDMI

The conga-SA7 offers a native HDMI interface. The interface supports the following:

- HDMI 2.0b specification
- data rate of 5.94 GT/s
- resolutions up to 4096x2160 @ 60 Hz

- 1. The HDMI interface supports an optional dual-mode DisplayPort interface (assembly option).
- 2. Variants with optional dual-mode DisplayPort do not support native HDMI voltage levels.

5.2.3 DP ++

The conga-SA7 offers a dual-mode DisplayPort (DP++). The interface supports:

- VESA DisplayPort standard 1.4
- data rates of 5.4 GT/s without re-timer
- resolutions up to 4096x2160 @ 60 Hz

- 1. The conga-SA7 offers an optional dual-mode DisplayPort interface (assembly option).
- 2. Variants with optional dual-mode DisplayPort do not support native HDMI voltage levels.

5.3 SATA

The conga-SA7 offers a SATA interface. The interface supports:

- SATA specification 3.2
- independent DMA operation
- data transfer rates up to 6.0 Gb/s
- AHCI mode using memory space

SATA interface does not support legacy mode using I/O space.

5.4 Gigabit Ethernet

The conga-SA7 offers two Gigabit Ethernet interfaces via TI DP83867CS/IS Ethernet PHY. The interfaces support the following:

- full- or half-duplex operation at 10/100/1000 Mb/s
- precision clock synchronization
- low jitter and latency
- TSN compliancy
- Wake-on-LAN

5.5 USB

The conga-SA7 supports the following:

- up to six USB 2.0 ports
- up to two Superspeed receive and transmit differential pairs for SuperSpeed signaling
- USB 2.0 and 3.1 specification
- up to 480 Mb/s data transfer for USB 2.0
- up to 5 Gb/s for USB 3.1 Gen 1 or up to 10 Gb/s for USB 3.1 Gen 2
- SuperSpeed, high-speed, full-speed and low-speed signaling

The possible options for USB port mapping are shown in table 10.

Table 10 Possible USB Port Mapping

	USB 2.0		USB 3.1 Gen 2/2.0		
	Host Only	Dual Role	Host Only	Dual Role	
Default	4 ports	TBD	2 port	-	
Option 1	4 ports	-	2 port	TBD	
Option 2	4 ports	-	2 ports	-	
Option 3	6 ports	-	-	-	

For USB 3.1 Gen 2 support on your carrier board, pair USB 2.0 port 2 or 3 or both with the SuperSpeed signals.

5.6 Audio (HDA)

The conga-SA7 offers a High Definition Audio interface. The HDA_RST# pin which is multiplexed with GPIO4 is configured to support HD audio by default.

The audio interface will not function if you configure the multiplexed pin for GPIO functionality.

5.7 SD Card

The conga-SA7 offers a 4-bit SD interface. The interface supports:

- SD Memory Card Specification 3.01
- SD 3.01 @ 1.8 V or @ 3.3 V signaling
- up to 200 MHz clock frequency
- up to 100 MB/s data rates with four parallel data lines
- card insertion and removal detection

The SD card interface supports only storage devices.

5.8 UART

The conga-SA7 provides four UART ports:

- UART1 and UART2 via the SoC¹
- UARTO and UART3 via the congatec board controller ²

- ^{1.} No support for legacy mode operation
- ^{2.} Driver is available on the congatec website at www.congatec.com

5.9 **GPIO**

The conga-SA7 offers up to 14 GPIOs—11 GPIOs by default and three GPIOs through multiplexed pins P112–P114. The GPIOs are controlled by the congatec Board controller.

If you configure the multiplexed pins (P112–P114) for GPIO functionality, their alternate functions (HDA audio, fan control) will not be available. See Table 31 "GPIO Signal Description" for more information.

5.10 SPI

The conga-SA7 offers two SPI interfaces:

- an eSPI for general purpose SPI devices
- SPIO for on-module or carrier board flash device

SPIO can optionally be rerouted for general purpose SPI devices (assembly option).

5.11 I2C

The conga-SA7 offers two I2C interfaces:

- general purpose I2C
- power management I2C

These interfaces are implemented through the congatec board controller and accessed through the congatec CGOS driver and API. The controller provides a fast-mode multi-master I2C bus that has maximum I2C bandwidth.

5.12 Power Control

The conga-SA7 operates only with 5 V input voltage. Its power-up sequence is described below:

- 1. The 5 V input voltage (VDD_IN) supplied to the carrier board powers the conga-SA7.
- 2. The conga-SA7 enables its power circuits if the VIN_PWR_BAD# signal is high.
- 3. Depending on the carrier board design and configuration, the conga-SA7 detects a power button event (PWRBTN#) if implemented.
- 4. The conga-SA7 enables the carrier board power by asserting CARRIER_PWR_ON (SUS_S5#) and CARRIER_STBY# (SUS_S3#).
- 5. The conga-SA7 releases the RESET_OUT# and starts the boot process.

The power control signals VIN_PWR_BAD#, CARRIER_PWR_ON, CARRIER_STBY#, RESET_IN#, RESET_OUT# and POWER_BTN# are described below:

VIN_PWR_BAD#

If VIN_PWR_BAD# signal (pin S150) is low, it indicates that the input voltage to the conga-SA7 is either not ready or out of the specified range.

Carrier board hardware should drive this signal low until the input power is up and stable. Releasing VIN_PWR_BAD# too early can cause numerous boot up problems.

CARRIER_PWR_ON

The CARRIER_PWR_ON signal (pin S154) is an active-high output signal. The module asserts this signal when all its power supplies are up, and subsequently enables the carrier board power supplies. This signal is equivalent to ACPI SUS_S5# signal.

CARRIER STBY#

The CARRIER_STBY# signal (pin S153) is an active-low output that can be used to indicate that the conga-SA7 is going into suspend state, where only power management functions and system memory are powered.

The CARRIER_STBY# signal can also be used to disable the carrier board power that is not required during standby.

RESET_IN#

The RESET_IN# signal (pin P127) is an active-low open drain input signal from the carrier board. The signal may be used to force the module to reset or reboot.

RESET OUT#

The RESET_OUT# signal (pin P126) is an active-low output signal from the module. The module asserts this signal during the power-up sequencing to allow the carrier board power circuits to come up. The module deasserts this signal to begin the boot-up process.

POWER_BTN#

The POWER_BTN# (pin P128) is an active-low open drain power button input from the carrier board. This power button signal is used to wake up or shut down the system from S5 state (soft off).

Power Supply Implementation Guidelines

The operational power source for the conga-SA7 is 5 V. The remaining necessary voltages are internally generated on the module with onboard voltage regulators.

When designing a power supply for a conga-SA7 application, be aware that the system may malfunction when a 5V power supply that produces non-monotonic voltage is used to power the system up. Though this problem is rare, it has been observed in some mobile power supply applications.

The problem is that some internal circuits on the module (e.g. clock-generator chips) generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused, thereby resulting in a malfunction.

To ensure this problem does not occur, observe the power supply rise waveform through an oscilloscope, during the power supply qualication phase. This will help to determine if the rise is indeed monotonic and does not have any dips. Y For more information, see the "Power Supply Design Guide for Desktop Platform Form Factors" document at www.intel.com.

Inrush and Maximum Current Peaks on VDD_IN

The maximum peak-current on the conga-SA7 VDD_IN (5 V) power rail can be as high as 5 A for a maximum of 100 μ s. You should therefore ensure the power supply and decoupling capacitors provide enough power to drive the module.

For more information about power control event signals, refer to the SMARC® specification.

6 Additional Features

6.1 Optional Onboard Interfaces

The conga-SA7 offers an optional Wi-fi/Blueetooth module (assembly option).

6.2 eMMC

The conga-SA5 offers an eMMC 5.1 flash onboard. Changes to the onboard eMMC may occur during the lifespan of the module in order to keep up with the rapidly changing eMMC technology.

The performance of the newer eMMC may vary depending on the eMMC technology.

For adequate operation of the eMMC, ensure that at least 15 % of the eMMC storage is reserved for vendor-specific functions."

6.3 Security Features

The conga-SA7 offers a discrete TPM 2.0 (Infineon SLB9670VQ2.0) by default.

6.4 congatec Board Controller (cBC)

The conga-SA7 is equipped with a microcontroller. The microcontroller plays an important role for most of the congated BIOS features. By isolating some of the embedded features such as system monitoring or the I²C bus from the x86 core architecture, the microcontroller increases the performance and reliability of the BIOS features, even during low power mode. In addition, it ensures the congated embedded feature set is compatible amongst all congated modules.

Some of the features offered by the cBC are described below:

6.4.1 Board Information

The cBC provides a rich data-set of manufacturing and board information such as serial number, EAN number, hardware and firmware revisions, and so on. It also keeps track of dynamically changing data like runtime meter and boot counter.

6.4.2 General Purpose Input/Output

The conga-SA7 offers general purpose inputs and outputs for custom system design. These GPIOs are controlled by the cBC.

6.4.3 Fan Control

The cBC uses the PWM (FAN_PWMOUT) signal to adjust the rotational speed of the fan without changing the fan's input voltage. Additionally, the FAN_TACHOIN signal provides the ability to monitor the system's fan RPMs (revolutions per minute). For accurate RPM reading, the FAN_TACHOIN signal must receive two pulses per revolution. Therefore, a two pulse per revolution fan or similar hardware solution is recommended.

- 1. Use a four-wire fan to generate the correct speed readout. For the correct fan control (PWMOUT, TACHIN) implementation, see the SMARC Design Guide Specification.
- 2. PWMOUT and TACHIN pins are shared with GPIO 5 and 6 respectively. The conga-SA7 does not support fan control if these pins are used for GPIO functionality.

6.4.4 Power Loss Control

The cBC has full control of the power-up of the module and therefore can be used to specify the behavior of the system after an AC power loss condition. Supported modes are "Always On", "Remain Off" and "Last State".

6.4.5 Watchdog

The conga-SA7 is equipped with a multi stage watchdog solution that is triggered by software. The conga-SA7 does not support external hardware triggering because the SMARC Specification does not provide support for external hardware triggering of the watchdog. For more information, see the application note AN3_Watchdog.pdf on the congatec GmbH website at www.congatec.com.

The conga-SA7 module does not support the watchdog NMI mode.

6.4.6 Enhanced Soft-Off State

The conga-SA7 supports an enhanced Soft-Off state (S5e)—a congatec proprietary low-power Soft-Off state. In this state, the CPU module switches off almost all the onboard logic in order to reduce the power consumption to absolute minimum (between 0.05 mA and 0.09 mA).

Refer to congatec application note AN36_Enhanced_Soft_Off.pdf for detailed description of the S5e state.

6.5 OEM BIOS Customization

The conga-SA7 is equipped with congatec Embedded BIOS, which is based on American Megatrends Inc. Aptio UEFI firmware. The congatec Embedded BIOS allows system designers to modify the BIOS. For more information about customizing the congatec Embedded BIOS, refer to the congatec System Utility user's guide CGUTLm1x.pdf on the congatec website at www.congatec.com or contact technical support.

The customizable features are described below:

6.5.1 OEM Default Settings

This feature allows system designers to create and store their own BIOS default configuration. Customized BIOS development by congatec for OEM default settings is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_OEM_Default_Map.pdf on the congatec website for details on how to add OEM default settings to the congatec Embedded BIOS.

6.5.2 OEM Boot Logo

This feature allows system designers to replace the standard text output displayed during POST with their own BIOS boot logo. Customized BIOS development by congatec for OEM Boot Logo is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_And_Add_Bootlogo.pdf on the congatec website for details on how to add OEM boot logo to the congatec Embedded BIOS.

6.5.3 OEM POST Logo

This feature allows system designers to replace the congatec POST logo displayed in the upper left corner of the screen during BIOS POST with their own BIOS POST logo. Use the congatec system utility CGUTIL 1.5.4 or later to replace/add the OEM POST logo.

6.5.4 OEM BIOS Code/Data

With the congatec embedded BIOS, system designers can add their own code to the BIOS POST process. The congatec Embedded BIOS first calls the OEM code before handing over control to the OS loader.

The OEM BIOS code of the new UEFI based firmware is called only when the CSM (Compatibility Support Module) is enabled in the BIOS setup menu. For more information on how to add OEM code, contact congatec technical support.

6.5.5 OEM DXE Driver

This feature allows designers to add their own UEFI DXE driver to the congatec embedded BIOS. Contact congatec technical support for more information on how to add an OEM DXE driver.

6.6 congatec Battery Management Interface

To facilitate the development of battery powered mobile systems based on embedded modules, congatec GmbH defined an interface for the exchange of data between a CPU module (using an ACPI operating system) and a Smart Battery system. A system developed according to the congatec Battery Management Interface Specification can provide the battery management functions supported by an ACPI capable operating system (e.g. charge state of the battery, information about the battery, alarms/events for certain battery states, ...) without the need for any additional modifications to the system BIOS.

In addition to the ACPI-Compliant Control Method Battery mentioned above, the latest versions of the conga-SA7 BIOS and board controller firmware also support LTC1760 battery manager from Linear Technology and a battery only solution (no charger). All three battery solutions are supported on the I2C bus and the SMBus. This gives the system designer more flexibility when choosing the appropriate battery sub-system.

For more information about the supported Battery Management Interface, contact your local sales representative.

6.7 API Support (CGOS)

In order to benefit from the above mentioned non-industry standard feature set, congatec provides an API that allows application software developers to easily integrate all these features into their code. The CGOS API (congatec Operating System Application Programming Interface) is the congatec proprietary API that is available for all commonly used Operating Systems such as Win32, Win64, Win CE, Linux.

The architecture of the CGOS API driver provides the ability to write application software that runs unmodified on all congatec CPU modules. All the hardware related code is contained within the congatec embedded BIOS on the module. See section 1.1 of the CGOS API software developers guide, which is available on the congatec website.

6.8 congatec System Sensors

The conga-SA7 offers the following sensors and monitors:

- temperature sensors
 - CPU temperature based on CPU Digital Thermal Sensor
 - Board temperature sensor located on the Board Controller
- voltage sensors
 - 5V standard voltage sensor
- · current sensor
- fan monitor

The sensors and monitors are accessible through CGOS interface, and also visible on the "Health Monitor" submenu in the BIOS Setup.

6.9 Suspend to Ram

The Suspend to RAM feature is available on the conga-SA7.

7 conga Tech Notes

The conga-SA7 has some technological features that require additional explanation. The following section will give the reader a better understanding of some of these features.

7.1 Intel® Elkhart Lake SoC Features

7.1.1 Processor Core

The SoC features Dual or Quad 3-way Supersclar, Out-of-Order Execution processor cores. Some of the features supported by the core are:

- Intel® 64 architecture
- Intel® Streaming SIMD Extensions
- Support for Intel® VTx-2 and VT-d
- Thermal management support vial Intel® Thermal Monitor
- Uses Programmable Service Engine Interrupt Routing
- Uses 10 nm process technology

Intel® Hyper-Threading technology is not supported (four cores execute four threads)

7.1.1.1 Intel® Virtualization Technology

Intel® Virtualization Technology (Intel® VT) makes a single system appear as multiple independent systems to software. With this technology, multiple, independent operating systems can run simultaneously on a single system. The technology components support virtualization of platforms based on Intel architecture microprocessors and chipsets. Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x) added hardware support in the processor to improve the virtualization performance and robustness.

RTS Real-Time Hypervisor supports Intel® VT and is verified on all current congatec x86 hardware.

congatec supports RTS Hypervisor.

7.1.1.2 AHCI

The SoC provides hardware support for Advanced Host Controller Interface (AHCI), a programming interface for SATA host controllers. Platforms supporting AHCI may take advantage of performance features such as no master/slave designation for SATA devices (each device is treated as a master) and hardware-assisted native command queuing. AHCI also provides usability enhancements such as Hot-Plug.

7.1.1.3 Thermal Management

ACPI is responsible for allowing the operating system to play an important part in the system's thermal management. This results in the operating system having the ability to take control of the operating environment by implementing cooling decisions according to the demands put on the CPU by the application.

The conga-SA7 ACPI thermal solution offers two different cooling policies.

Passive Cooling

When the temperature in the thermal zone must be reduced, the operating system can decrease the power consumption of the processor by throttling the processor clock. One of the advantages of this cooling policy is that passive cooling devices (in this case the processor) do not produce any noise. Use the "passive cooling trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to start or stop the passive cooling procedure.

Critical Trip Point

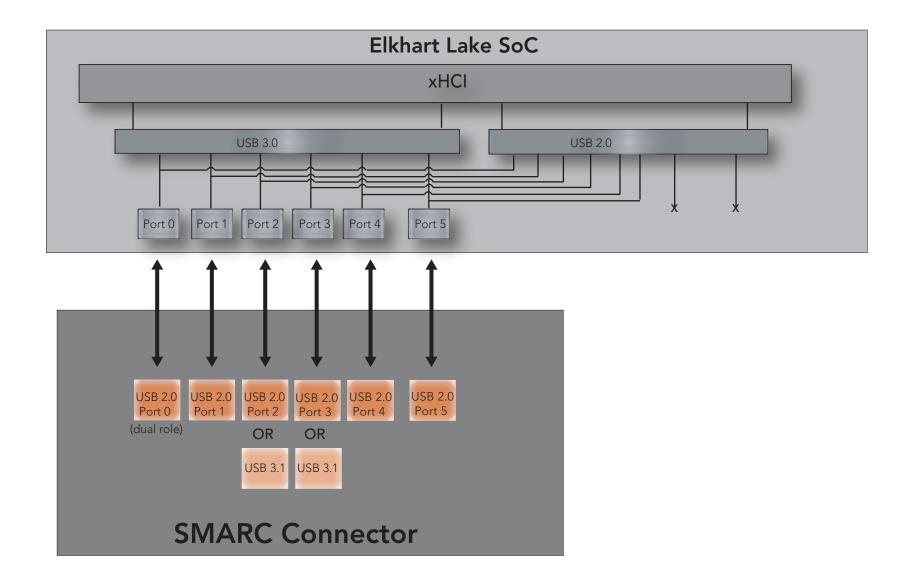
If the temperature in the thermal zone reaches a critical point then the operating system will perform a system shut down in an orderly fashion in order to ensure that there is no damage done to the system as result of high temperatures. Use the "critical trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to shut down the system.

The end user must determine the cooling preferences for the system by using the setup nodes in the BIOS setup program to establish the appropriate trip points.

If passive cooling is activated and the processor temperature is above the trip point the processor clock is throttled. See section 12 of the ACPI Specification 2.0 C for more information about passive cooling.

7.2 ACPI Suspend Modes and Resume Events

The conga-SA7 BIOS supports S3 (Suspend to RAM). The BIOS does not support S4 (Suspend to Disk).


Table 11 Wake Events

The table below lists the events that wake the system from ${\sf S3}.$

Wake Event	Conditions or remarks
Power Button	Wakes unconditionally from S3
Onboard LAN Event	Device driver must be configured for Wake On LAN support
SMBALERT#	Wakes unconditionally from S3
PCI Express WAKE#	Wakes unconditionally from S3
WAKE#	Wakes unconditionally from S3
USB Mouse/Keyboard Event	When standby mode is set to S3, the standby power source must power the USB hardware: in the ACPI setup menu, set "USB Device Wakeup" to "Enabled" (if setup node is available in the BIOS setup menu) in Device Manager, expand "Keyboard" or "Mice and other pointing devices" right-click keyboard or mouse device and click "Properties" click "Power Management" tab and check "Allow this device to wake the computer'
RTC Alarm	In the power setup menue, active and configure "Resume On RTC Alarm"
Watchdog Power Button Event	Wakes unconditionally from S3

7.3 USB Port Mapping

8 Signal Descriptions and Pinout Tables

The following section describes the signals found on SMARC® module's edge fingers. The pinout of the module complies with SMARC Specification 2.1.

The table below describes the terminology used in this section. The PU/PD column indicates if a pull-up or pull-down resistor has been used. If the field entry area in this column for the signal is empty, then no pull-up or pull-down resistor has been implemented. The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level.

Not all the signals described in this section are available on all conga-SA7 variants. Use the article number of the module and refer to the "conga-SA7 Options Information" table in section 1 to determine the options available on the module.

Table 12 Signal Tables Terminology Descriptions

Term	Description
I	Input to the module
0	Output from the module
O OD	Open drain output from the module
IOD	Open drain input to the module, with pull-up on module
OD	Open drain
I/O	Bi-directional Input/Output Pin
PU(i)/PD(i)	Pull-up or pull-down resistor internal to the SoC or transceiver
VDD_IN	Signal may be exposed to module input voltage range (4.75 to 5.25V)
CMOS	Logic input or output with 3.3 V signal level
GBe MDI	Differential analog signaling for Gigabit Media Dependent Interface
LVDS DP	LVDS signaling for DisplayPort devices
LVDS D-PHY	LVDS signaling for MIPI CSI-2 camera and DSI display interfaces
LVDS LCD	LVDS signaling for LVDS LCD displays
LVDS PCIE	LVDS signaling for PCle interfaces
LVDS SATA	LVDS signaling for SATA interfaces
TMDS	LVDS signaling for HDMI display interfaces
USB	DC coupled differential signaling for traditional (non-Superspeed) USB signals
USB SS	LVDS signaling for SuperSpeed USB signals
PCIE	PCI Express differential pair signals. In compliance with the PCI Express Base Specification 2.0
USB VBUS 5V	5V tolerant input for USB VBUS detection

Table 13 SMARC Edge Finger Pinout

P-PIN	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
		S1	CSI1_TX+ / I2C_CAM1_CK ²
P1	SMB_ALERT#	S2	CSI1_TX- / I2C_CAM1_DAT ²
P2	GND	S3	GND
P3	CSI1_CK+ ²	S4	RSVD ²
P4	CSI1_CK- ²	S5	CSI0_TX+ / I2C_CAM0_CK
P5	GBE1_SDP	S6	CAM_MCK ²
P6	GBE0_SDP	S7	CSI0_TX- / I2C_CAM0_DAT
P7	CSI1_RX0+ ²	S8	CSI0_CK+ ²
P8	CSI1_RX0- ²	S9	CSIO_CK- ²
P9	GND	S10	GND
P10	CSI1_RX1+ ²	S11	CSI0_RX0+ ²
P11	CSI1_RX1- ²	S12	CSI0_RX0- ²
P12	GND	S13	GND
P13	CSI1_RX2+ ²	S14	CSI0_RX1+ ²
P14	CSI1_RX2- ²	S15	CSI0_RX1-2
P15	GND	S16	GND
P16	CSI1_RX3+ ²	S17	GBE1_MDI0+
P17	CSI1_RX3- ²	S18	GBE1_MDI0-
P18	GND	S19	GBE1_LINK100#
P19	GBE0_MDI3-	S20	GBE1_MDI1+
P20	GBE0_MDI3+	S21	GBE1_MDI1-
P21	GBE0_LINK100#	S22	GBE1_LINK1000#
P22	GBE0_LINK1000#	S23	GBE1_MDI2+
P23	GBE0_MDI2-	S24	GBE1_MDI2-
P24	GBE0_MDI2+	S25	GND
P25	GBE0_LINK_ACT#	S26	GBE1_MDI3+
P26	GBE0_MDI1-	S27	GBE1_MDI3-
P27	GBE0_MDI1+	S28	GBE1_CTREF ²
P28	GBE0_CTREF ²	S29	PCIE_D_TX+ / SERDES_0_TX+
P29	GBE0_MDI0-	S30	PCIE_D_TX- / SERDES_0_TX-
P30	GBE0_MDI0+	S31	GBE1_LINK_ACT#
P31	SPI0_CS1#	S32	PCIE_D_RX+ / SERDES_0_RX+

P-PIN	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P32	GND	S33	PCIE_D_RX- / SERDES_0_RX-
P33	SDIO_WP	S34	GND
P34	SDIO_CMD	S35	USB4+
P35	SDIO_CD#	S36	USB4-
P36	SDIO_CK	S37	USB3_VBUS_DET ¹
P37	SDIO_PWR_EN	S38	AUDIO_MCK
P38	GND	S39	I2SO_LRCK ¹
P39	SDIO_D0	S40	I2S0_SDOUT ¹
P40	SDIO_D1	S41	12S0_SDIN ¹
P41	SDIO_D2	S42	12S0_CK ¹
P42	SDIO_D3	S43	ESPI_ALERTO#
P43	SPIO_CSO#	S44	ESPI_ALERT1#
P44	SPIO_CK	S45	MDIO_CLK ²
P45	SPI0_DIN	S46	MDIO_DAT ²
P46	SPI0_DO	S47	GND
P47	GND	S48	I2C_GP_CK
P48	SATA_TX+	S49	I2C_GP_DAT
P49	SATA_TX-	S50	HDA_SYNC
P50	GND	S51	HDA_SDO
P51	SATA_RX+	S52	HDA_SDI
P52	SATA_RX-	S53	HDA_CK
P53	GND	S54	SATA_ACT#
P54	ESPI_CS0# / SPI1_CS0# / QSPI_CS0#	S55	USB5_EN_OC#
P55	ESPI_CS1# / SPI1_CS1# / QSPI_CS1#	S56	ESPI_IO_2 / QSPI_IO_2
P56	ESPI_CK / SPI1_CK / QSPI_CK	S57	ESPI_IO_3 / QSPI_IO_3
P57	ESPI_IO_1 / SPI1_DIN / QSPI_IO_1	S58	ESPI_RESET#
P58	ESPI_IO_0 / SPI1_DO / QSPI_IO_0	S59	USB5+
P59	GND	S60	USB5-
P60	USB0+	S61	GND
P61	USB0-	S62	USB3_SSTX+
P62	USB0_EN_OC#	S63	USB3_SSTX-
P63	USB0_VBUS_DET ¹	S64	GND
P64	USB0_OTG_ID ¹	S65	USB3_SSRX+
P65	USB1+	S66	USB3_SSRX-

P-PIN	Primary (Top) Side	S-Pin	Secondary (Bottom) Side	
P66	USB1-	S67	GND	
P67	USB1_EN_OC#	S68	USB3+	
P68	GND	S69	USB3-	
P69	USB2+	S70	GND	
P70	USB2-	S71	USB2_SSTX+	
P71	USB2_EN_OC#	S72	USB2_SSTX-	
P72	RSVD ²	S73	GND	
P73	RSVD ²	S74	USB2_SSRX+	
P74	USB3_EN_OC#	S75	USB2_SSRX-	
	Key		Key	
P75	PCIE_A_RST#	S76	PCIE_B_RST#	
P76	USB4_EN_OC#	S77	PCIE_C_RST#	
P77	PCIE_B_CKREQ#	S78	PCIE_C_RX+ / SERDES_1_RX+	
P78	PCIE_A_CKREQ#	S79	PCIE_C_RX- / SERDES_1_RX-	
P79	GND	S80	GND	
P80	PCIE_C_REFCK+	S81	PCIE_C_TX+ / SERDES_1_TX+	
P81	PCIE_C_REFCK-	S82	PCIE_C_TX- / SERDES_1_TX-	
P82	GND	S83	GND	
P83	PCIE_A_REFCK+	S84	PCIE_B_REFCK+	
P84	PCIE_A_REFCK-	S85	PCIE_B_REFCK-	
P85	GND	S86	GND	
P86	PCIE_A_RX+	S87	PCIE_B_RX+	
P87	PCIE_A_RX-	S88	PCIE_B_RX-	
P88	GND	S89	GND	
P89	PCIE_A_TX+	S90	PCIE_B_TX+	
P90	PCIE_A_TX-	S91	PCIE_B_TX-	
P91	GND	S92	GND	
P92	HDMI_D2+ / DP1_LANE0+	S93	DP0_LANE0+	
P93	HDMI_D2- / DP1_LANE0-	S94	DP0_LANE0-	
P94	GND	S95	DP0_AUX_SEL	
P95	HDMI_D1+ / DP1_LANE1+	S96	DP0_LANE1+	
P96	HDMI_D1- / DP1_LANE1-	S97	DP0_LANE1-	

P-PIN	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P97	GND	S98	DP0_HPD
P98	HDMI_D0+ / DP1_LANE2+	S99	DP0_LANE2+
P99	HDMI_D0- / DP1_LANE2-	S100	DP0_LANE2-
P100	GND	S101	GND
P101	HDMI_CK+ / DP1_LANE3+	S102	DP0_LANE3+
P102	HDMI_CK- / DP1_LANE3-	S103	DP0_LANE3-
P103	GND	S104	USB3_OTG_ID ¹
P104	HDMI_HPD / DP1_HPD	S105	DP0_AUX+
P105	HDMI_CTRL_CK / DP1_AUX+	S106	DP0_AUX-
P106	HDMI_CTRL_DAT / DP1_AUX-	S107	LCD1_BKLT_EN ²
P107	DP1_AUX_SEL	S108	LVDS1_CK+ / eDP1_AUX+ / DSI1_CLK+
P108	GPIO0 / CAM0_PWR#	S109	LVDS1_CK- / eDP1_AUX- / DSI1_CLK-
P109	GPIO1 / CAM1_PWR#	S110	GND
P110	GPIO2 / CAM0_RST#	S111	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+
P111	GPIO3 / CAM1_RST#	S112	LVDS1_0- / eDP1_TX0- / DSI1_D0-
P112	GPIO4 / HDA_RST#	S113	eDP1_HPD / DSI1_TE ²
P113	GPIO5 / PWM_OUT	S114	LVDS1_1+ / eDP1_TX1+ / DSI1_D1+
P114	GPIO6 / TACHIN	S115	LVDS1_1- / eDP1_TX1- / DSI1_D1-
P115	GPIO7	S116	LCD1_VDD_EN ²
P116	GPIO8	S117	LVDS1_2+ / eDP1_TX2+ / DSI1_D2+
P117	GPIO9	S118	LVDS1_2- / eDP1_TX2- / DSI1_D2-
P118	GPIO10	S119	GND
P119	GPIO11	S120	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+
P120	GND	S121	LVDS1_3- / eDP1_TX3- / DSI1_D3-
P121	I2C_PM_CK	S122	LCD1_BKLT_PWM ²
P122	I2C_PM_DAT	S123	GPIO13
P123	BOOT_SEL0#	S124	GND
P124	BOOT_SEL1#	S125	LVDS0_0+ / eDP0_TX0+ / DSI0_D0+
P125	BOOT_SEL2#	S126	LVDS0_0- / eDP0_TX0- / DSI0_D0-
P126	RESET_OUT#	S127	LCD0_BKLT_EN
P127	RESET_IN#	S128	LVDS0_1+ / eDP0_TX1+ / DSI0_D1+
P128	POWER_BTN#	S129	LVDS0_1- / eDP0_TX1- / DSI0_D1-
P129	SERO_TX	S130	GND
P130	SERO_RX	S131	LVDS0_2+ / eDP0_TX2+ / DSI0_D2+

P-PIN	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P131	SERO_RTS#	S132	LVDS0_2- / eDP0_TX2- / DSI0_D2-
P132	SERO_CTS#	S133	LCD0_VDD_EN
P133	GND	S134	LVDS0_CK+ / eDP0_AUX+ / DSI0_CLK+
P134	SER1_TX	S135	LVDS0_CK- / eDP0_AUX- / DSI0_CLK-
P135	SER1_RX	S136	GND
P136	SER2_TX	S137	LVDS0_3+ / eDP0_TX3+ / DSI0_D3+
P137	SER2_RX	S138	LVDS0_3- / eDP0_TX3- / DSI0_D3-
P138	SER2_RTS#	S139	I2C_LCD_CK
P139	SER2_CTS#	S140	I2C_LCD_DAT
P140	SER3_TX	S141	LCD0_BKLT_PWM
P141	SER3_RX	S142	GPIO12
P142	GND	S143	GND
P143	CAN0_TX	S144	eDP0_HPD / DSI0_TE
P144	CAN0_RX	S145	WDT_TIME_OUT#
P145	CAN1_TX	S146	PCIE_WAKE#
P146	CAN1_RX	S147	VDD_RTC
P147	VDD_IN	S148	LID#
P148	VDD_IN	S149	SLEEP#
P149	VDD_IN	S150	VIN_PWR_BAD#
P150	VDD_IN	S151	CHARGING#
P151	VDD_IN	S152	CHARGER_PRSNT#
P152	VDD_IN	S153	CARRIER_STBY#
P153	VDD_IN	S154	CARRIER_PWR_ON
P154	VDD_IN	S155	FORCE_RECOV#
P155	VDD_IN	S156	BATLOW#
P156	VDD_IN	S157	TEST#
		S158	GND

^{1.} Not supported

^{2.} Not connected

Table 14 LVDS Signal Description

Signals	Pins	Description	I/O	PU/PD	Comments
LVDS0_0+ LVDS0_0-	S125 S126	LVDS primary data channel, differential pair 0	O LVDS LCD		
LVDS0_1+ LVDS0_1-	S128 S129	LVDS primary data channel, differential pair 1	O LVDS LCD		
LVDS0_2+ LVDS0_2-	S131 S132	LVDS primary data channel, differential pair 2	O LVDS LCD		
LVDS0_3+ LVDS0_3-	S137 S138	LVDS primary data channel, differential pair 3	O LVDS LCD		
LVDS0_CK+ LVDS0_CK-	S134 S135	LVDS primary data channel differential clock pair	O LVDS LCD		
LCD0_VDD_EN	S133	LVDS primary channel power enable. High enables panel VDD	O 1.8V		
LCD0_BKLT_EN	S127	LVDS primary channel backlight enable. High enables panel backlight	O 1.8V		
LCD0_BKLT_PWM	S141	LVDS primary channel brightness via pulse width modulation (PWM)	O 1.8V		
LVDS1_0+ LVDS1_0-	S111 S112	LVDS secondary data channel, differential pair 0	O LVDS LCD		
LVDS1_1+ LVDS1_1-	S114 S115	LVDS secondary data channel, differential pair 1	O LVDS LCD		
LVDS1_2+ LVDS1_2-	S117 S118	LVDS secondary data channel, differential pair 2	O LVDS LCD		
LVDS1_3+ LVDS1_3-	S120 S121	LVDS secondary data channel, differential pair 3	O LVDS LCD		
LVDS1_CK+ LVDS1_CK-	S108 S109	LVDS secondary data channel differential clock pair	O LVDS LCD		
LCD1_VDD_EN	S116	LVDS secondary channel power enable. High enables panel VDD	O 1.8V		Not connected
LCD1_BKLT_EN	S107	LVDS secondary channel backlight enable. High enables panel backlight	O 1.8V		
LCD1_BKLT_PWM	S122	LVDS secondary channel brightness control via pulse width modulation (PWM)	O 1.8V		
I2C_LCD_DAT	S140	DDC data line for flat panel detection and control. Possible EDID EEPROM address conflicts may occur if multiple displays are implemented.	I/O OD 1.8V	PU 2k2	
I2C_LCD_CK	S139	DDC clock line for flat panel detection and control	O OD 1.8V	PU 2k2	

Table 14.1 Optional eDP Signal Description

Signals	Pins	Description	I/O	PU/PD	Comments
eDP0_TX0+ eDP0_TX0-	S125 S126	eDP0 primary differential data pair 0	O LVDS DP		Not supported by default. AC coupling required off-module
eDP0_TX1+ eDP0_TX1-	S128 S129	eDP0 primary differential data pair 1	O LVDS DP		
eDP0_TX2+ eDP0_TX2-	S131 S132	eDP0 primary differential data pair 2	O LVDS DP		
eDP0_TX3+ eDP0_TX3-	S137 S138	eDP0 primary differential data pair 3	O LVDS DP		
eDP0_AUX+ eDP0_AUX-	S134 S135	eDP0 primary auxiliary differential pair for link management and device control	O LVDS DP		
LCD0_VDD_EN	S133	Primary panel power enable. High enables panel VDD	O 1.8V		
LCD0_BKLT_EN	S127	Primary backlight enable. High enables panel backlight	O 1.8V		
LCD0_BKLT_PWM	S141	Primary backlight brightness control via pulse width modulation (PWM)	O 1.8V		
eDP0_HPD	S144	eDP0 Hot Plug Detect pins for primary eDP display	I 1.8V	PD 100k	100k PD present only on variants with eDP support
eDP1_TX0+ eDP1_TX0-	S111 S112	eDP1 secondary differential data pair 0	O LVDS DP		Not supported
eDP1_TX1+ eDP1_TX1-	S114 S115	eDP1 secondary differential data pair 1	O LVDS DP		
eDP1_TX2+ eDP1_TX2-	S117 S118	eDP1 secondary differential data pair 2	O LVDS DP		
eDP1_TX3+ eDP1_TX3-	S120 S121	eDP1 secondary differential data pair 3	O LVDS DP		
eDP1_AUX+ eDP1_AUX-	S108 S109	eDP1 secondary auxiliary differential pair for link management and device control	O LVDS DP		
LCD1_VDD_EN	S116	Secondary panel power enable. High enables panel VDD	O 1.8V		Not connected
LCD1_BKLT_EN	S107	Secondary panel backlight enable. High enables panel backlight	O 1.8V		
LCD1_BKLT_PWM	S122	Secondary panel backlight brightness control via pulse width modulation (PWM)	O 1.8V		
eDP1_HPD	S113	eDP1 Hot Plug Detect pins	I 1.8V		
I2C_LCD_DAT	S140	I2C data to read LCD display EDID EEPROMs. Possible EDID EEPROM address conflicts may occur if multiple displays are implemented	I/O OD 1.8V	PU 1k3	Optional - eDP panel information is usually via the eDP auxiliary pair
I2C_LCD_CK	S139	I2C clock to read LCD display EDID EEPROMs	O 1.8V	PU 1k3	Optional - eDP panel information is usually via the eDP auxiliary pair

Table 14.2 Optional MIPI-DSI Signal Description

Signals	Pins	Description	I/O	PU/PD	Comments
DSI0_D0+ DSI0_D0-	S125 S126	DSI0 primary differential data pair 0	O LVDS D-PHY		Not supported by default
DSI0_D1+ DSI0_D1-	S128 S129	DSI0 primary differential data pair 1	O LVDS D-PHY		
DSI0_D2+ DSI0_D2-	S131 S132	DSI0 primary differential data pair 2	O LVDS D-PHY		
DSI0_D3+ DSI0_D3-	S137 S138	DSI0 primary differential data pair 3	O LVDS D-PHY		
DSI0_CLK+ DSI0_CLK-	S134 S135	DSI0 primary differential clock pair	O LVDS D-PHY		
DSI0_TE	S144	DSI0 primary panel tearing effect signal	I 1.8V		
LCD0_VDD_EN	S133	Primary panel power enable. High enables panel VDD	O 1.8V		
LCD0_BKLT_EN	S127	Primary panel backlight enable. High enables panel backlight	O 1.8V		
LCD0_BKLT_PWM	S141	Primary panel backlight brightness control via pulse width modulation (PWM)	O 1.8V		
DSI1_D0+ DSI1_D0-	S111 S112	DSI1 secondary differential data pair 0	O LVDS D-PHY		
DSI1_D1+ DSI1_D1-	S114 S115	DSI1 secondary differential data pair 1	O LVDS D-PHY		
DSI1_D2+ DSI1_D2-	S117 S118	DSI1 secondary differential data pair 2	O LVDS D-PHY		
DSI1_D3+ DSI1_D3-	S120 S121	DSI1 secondary differential data pair 3	O LVDS D-PHY		
DSI1_CLK+ DSI1_CLK-	S108 S109	DSI1 secondary differential clock pair	O LVDS D-PHY		
LCD1_VDD_EN	S116	Secondary panel power enable. High enables panel VDD	O 1.8V		
LCD1_BKLT_EN	S107	Secondary panel backlight enable. High enables panel backlight	O 1.8V]
LCD1_BKLT_PWM	S122	Secondary panel backlight brightness via pulse width modulation (PWM)	O 1.8V		
DSI1_TE	S113	DSI1 secondary panel tearing effect signal	I 1.8V		
I2C_LCD_DAT	S140	DDC data line for flat panel detection and control. Possible EDID EEPROM address conflicts may occur if multiple displays are implemented	I/O OD 1.8V	PU 2k2	
I2C_LCD_CK	S139	DC clock line for flat panel detection and control	O 1.8V	PU 2k2	

The MIPI-DSI interface is not supported by default (assembly option only).

Table 15 HDMI Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
HDMI_D0+ HDMI_D0-	P98 P99	TMDS / HDMI differential data pair 0	O TMDS		
HDMI_D1+ HDMI_D1-	P95 P96	TMDS / HDMI differential data pair 1	O TMDS		
HDMI_D2+ HDMI_D2-	P92 P93	TMDS / HDMI differential data pair 2	O TMDS		
HDMI_CK+ HDMI_CK-	P101 P102	TMDS / HDMI differential clock pair	O TMDS		
HDMI_CTRL_CK	P105	I2C clock line dedicated to HDMI	O 1.8V OD	PU 100k	Level shifter FET and 5V PU resistor shall be placed
HDMI_CTRL_DAT	P106	I2C data line dedicated to HDMI	I/O 1.8V OD	PU 100k	between the module and the HDMI connector
HDMI_HPD	P104	HDMI Hot plug active high detection signal that serves as an interrupt request	I 1.8V	PD 1M	

For HDMI operation, drive DP1_AUX_SEL (pin P107) to 1.8 V on the carrier board.

Table 15.1 DP++ Operation Over HDMI Pins Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
DP1_LANE0+ DP1_LANE0-	P92 P93	DisplayPort differential data pair 0	LVDS DP		AC coupled off module
DP1_LANE1+ DP1_LANE1-	P95 P96	DisplayPort differential data pair 1	LVDS DP		
DP1_LANE2+ DP1_LANE2-	P98 P99	DisplayPort differential data pair 2	LVDS DP		
DP1_LANE3+ DP1_LANE3-	P101 P102	DisplayPort differential data pair 3	LVDS DP		
DP1_HPD	P104	DisplayPort Hot Plug Detect	I 1.8V	PD 1M	
DP1_AUX+	P105	DisplayPort auxiliary differential pair. Used for link management and device control	I/O 1.8V OD	PD 100k	AC coupled on module
DP1_AUX-	P106			PU 100k	
DP1_AUX_SEL	P107	Pull to GND on carrier for DP operation in dual-mode (DP++) implementations. Drive to 1.8V on carrier for HDMI operation. Terminated on module through 1M resistor to GND	I 1.8V	PD 1M	

The conga-SA7 offers this interface as an assembly option.

Table 16 DisplayPort++

Signal	Pin #	Description	I/O	PU/PD	Comment
DP0_LANE0+ DP0_LANE0-	S93 S94	DisplayPort differential data pair 0	LVDS DP		AC coupled off module
DP0_LANE1+ DP0_LANE1-	S96 S97	DisplayPort differential data pair 1	LVDS DP		
DP0_LANE2+ DP0_LANE2-	S99 S100	DisplayPort differential data pair 2	LVDS DP		
DP0_LANE3+ DP0_LANE3-	S102 S103	DisplayPort differential data pair 3	LVDS DP		
DP0_HPD	S98	DisplayPort Hot Plug Detect	I 1.8V	PD 1M	
DP0_AUX+	S105	DisplayPort auxiliary differential pair. Used for link	LVDS PCIE	PD 100k	AC coupled on module
DP0_AUX-	S106	management and device control	LVDS PCIE	PU 100k	
DP0_AUX_SEL	S95	Pulled to GND on carrier for DP operation in dual- mode (DP++) implementations	I 1.8V	PD 1M	

Table 17 MIPI CSI-2/-3

Signal	Pin #	Description	I/O	PU/PD	Comment
CSI0_RX0+ CSI0_RX0-	S11 S12	CSIO differential data pair 0	I LVDS D-PHY		Not connected
CSI0_RX1+ CSI0_RX1-	S14 S15	CSIO differential data pair 1	I LVDS D-PHY		
CSI0_CK+ CSI0_CK-	S8 S9	CSIO differential clock pair	I LVDS D-PHY		
CAM0_PWR# / GPIO0	P108	Camera 0 power enable, active low output/ General Purpose Input Output 0	I/O 1.8V		Supports only GPIO
CAM0_RST# / GPIO2	P110	Camera 0 reset, active low output / General Purpose Input Output 2	I/O 1.8V		
I2C_CAM0_CK / CSI0_TX+	S5	I2C clock (serial camera support link for serial cameras).	I/O OD 1.8V	PU 2k2	
I2C_CAM0_DAT / CSI0_TX-	S7	I2C data (serial camera support link for serial cameras)	I/O OD 1.8V	PU 2k2	
CSI1_RX0+ CSI1_RX0-	P7 P8	CSI1 differential data pair 0	I LVDS D-PHY		Not connected

Signal	Pin #	Description	I/O	PU/PD	Comment		
CSI1_RX1+ CSI1_RX1-	P10 P11	CSI1 differential data pair 1	I LVDS D-PHY		Not connected		
CSI1_RX2+ CSI1_RX2-	P13 P14	CSI1 differential data pair 2	I LVDS D-PHY				
CSI1_Rx3+ CSI1_RX3-	P16 P17	CSI1 differential data pair 3	I LVDS D-PHY				
CSI1_CK+ CSI1_CK-	P3 P4	CSI1 differential clock pair	I LVDS D-PHY				
CAM1_PWR# / GPIO1	P109	Camera 1 power enable, active low output / General Purpose Input Output 1	I/O 1.8V		Supports only GPIO		
CAM1_RST# / GPIO3	P111	Camera 1 reset, active low output / General Purpose Input Output 3	I/O 1.8V				
CAM_MCK	S6	Master clock output for CSI camera support. May be used for CSI0 or CSI1 or both	O 1.8V		Not connected		
I2C_CAM1_CK / CSI1_TX+	S1	I2C clock (serial camera support link for serial cameras)	I/O OD 1.8V		-		
I2C_CAM1_DAT / CSI1_TX-	S2	I2C data (serial camera support link for serial cameras)	I/O OD 1.8V]		

Table 18 SDIO Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SDIO_D0 SDIO_D1 SDIO_D2 SDIO_D3	P39 P40 P41 P42	SDIO Data lines	I/O 3.3V		
SDIO_CMD	P34	SDIO Command/Response. This signal is used for card initialization and for command transfers	I/O 3.3V		
SDIO_CK	P36	SDIO Clock. With each cycle of this signal a one-bit transfer on the command and each data line occurs	O 3.3V		
SDIO_WP	P33	SDIO Write Protect. This signal denotes the state of the write-protect tab on SD cards	I OD 3.3V	PU 10k	
SDIO_CD#	P35	SDIO Card Detect. This signal indicates when a SDIO/MMC card is present	I OD 3.3V	PU 10k	
SDIO_PWR_EN	P37	SDIO Power Enable. This signal is used to enable the power being supplied to a SD/MMC card device	O 3.3V	PD 100k	

Table 19 SPI0 Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SPI0_CS0#	P43	SPIO master chip select 0 output for selecting SPI boot device	O 1.8V	PU 100k	
SPI0_CS1#	P31	SPIO master chip select output for selecting the second chip select when two devices are used. Do not use when only one SPI device is used	O 1.8V		
SPI0_CK	P44	SPIO master clock output	O 1.8V	PD 75k	
SPI0_DIN	P45	SPIO master data input (SPI serial input data from the SPI device to SMARC® module)	I 1.8V		
SPI0_DO	P46	SPIO master data output (SPI serial output data from SMARC® module to the SPI device	O 1.8V	PU 20k	

The conga-SA7 supports only the BIOS SPI flash memory on the SPI0 bus.

Table 20 eSPI/SPI1 Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
ESPI_CK	P56	ESPI master clock output. This pin provides the reference timing for all the serial input and output operations	O 1.8V		
ESPI_CS0#	P54	ESPI master chip selet outputs. Driving Chip Select# low selects a particular	O 1.8V		
ESPI_CS1#	P55	eSPI slave for the transaction. Each of the eSPI slaves is connected to a dedicated Chip Select# pin			
ESPI_IO_0	P58	ESPI master data input/outputs. These bi-directional input/output pins are used			
ESPI_IO_1	P57	to transfer data between master and slaves. In single I/O mode, ESPI_IO_0 is the eSPI master output/eSPI slave input (MOSI) whereas ESPI_IO_1 is the eSPI			
ESPI_IO_2	S56	master input/eSPI slave output (MISO)			
ESPI_IO_3	S57				
ESPI_RESET#	S58	Resets the eSPI interface for both master and slaves. ESPI_RESET# is typically driven from eSPI master to eSPI slaves	O 1.8V	PD 75k	
ESPI_ALERTO#	S43	This pin is used by eSPI slave to request service from eSPI master. Alert# is an	I 1.8V		
ESPI_ALERT1#	S44	open-drain output from the slave. This pin is optional for single master-single slave configuration where I/O[1] can be used to signal the alert event		PU 100k 1.8V	

The conga-SA7 supports only general purpose devices on the eSPI/SPI1 bus.

Table 21 I2S Signal Descriptions

Signal	Pin #	Description	1/0	PU/PD	Comment
I2S0_LRCK	S39	Left and right audio synchronization clock	I/O 1.8V		Not Supported
I2S0_SDOUT	S40	Digital audio output	O 1.8V		
I2S0_SDIN	S41	Ditial audio input	I 1.8V		
12S0_CK	S42	Digital audio clock	I/O 1.8V		
AUDIO_MCK	S38	Master clock output to audio codecs	O 1.8V		

The conga-SA7 does not support I2S.

Table 22 HDA / I2S Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
HDA_SYNC	S50	HD audio serial bus synchronization.	I/O 1.8V		
HDA_SDO	S51	HD audio serial data output to codec	O 1.8V		
HDA_SDI	S52	HD audio serial data input from codec	I 1.8V		
HDA_CK	S53	HD audio serial bit clock to codec	I/O 1.8V	PD 75k	
HDA_RST# / GPIO4	P112	HD audio codec reset	O 1.8V	PD 75k	HDA_RST# is default

Table 23 I2C Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
I2C_GP_CK	S48	I2C General purpose clock signal	I/O 1.8V	PU 2k2	
I2C_GP_DAT	S49	I2C General purpose data signal	I/O 1.8V	PU 2k2	

Table 24 Asynchronous Serial Port Signal Description

Signal	Pin #	Description	I/O	PU/PD	Comment
SER0_TX	P129	Asynchronous serial data output port 0	O 1.8V		congatec Board Controller UART
SER0_RX	P130	Asynchronous serial data input port 0	I 1.8V		
SERO_RTS#	P131	Request to Send handshake line for SERO	O 1.8V		
SERO_CTS#	P132	Clear to Send handshake line for SER0	I 1.8V		
SER1_TX	P134	Asynchronous serial data output port 1	O 1.8V		SoC UART
SER1_RX	P135	Asynchronous serial data input port 1	I 1.8V	PU 100k 1.8V	
SER2_TX	P136	Asynchronous serial data output port 2	O 1.8V		
SER2_RX	P137	Asynchronous serial data input port 2	I 1.8V	PU 100k 1.8V	
SER2_RTS#	P138	Request to Send handshake line for SER2	O 1.8V		
SER2_CTS#	P139	Clear to Send handshake line for SER2	I 1.8V	PU 100k 1.8V	
SER3_TX	P140	Asynchronous serial data output port 3	O 1.8V		congatec Board Controller UART
SER3_RX	P141	Asynchronous serial data input port 3	I 1.8V		

Table 25 USB Pinout Description

Signal	Pin #	Description	I/O	PU/PD	Comment
USB0+ USB0-	P60 P61	Differential USB 2.0 data pairs	I/O USB		
USB1+ USB1-	P65 P66	Differential USB 2.0 data pairs	I/O USB		
USB2+ USB2-	P69 P70	Differential USB 2.0 data pairs	I/O USB		
USB3+ USB3-	S68 S69	Differential USB 2.0 data pairs	I/O USB		
USB4+ USB4-	S35 S36	Differential USB 2.0 data pairs	I/O USB		
USB5+ USB5-	S59 S60	Differential USB 2.0 data pairs	I/O USB		
USB0_EN_OC# USB1_EN_OC# USB2_EN_OC# USB3_EN_OC# USB4_EN_OC# USB5_EN_OC#	P62 P67 P71 P74 P76 S55	Pulled low by module to disable USB0 power. Pulled low by carrier OD driver to indicate over-current situation. A pull-up to a 3.3V rail shall be present on the module	I/O OD 3.3V	PU 10k	

		·			
USB0_VBUS_DET	P63	USB host power detection when this port is used as a device	I USB VBUS 5V	PD 100k	Not supported
USB3_VBUS_DET	S37	USB host power detection when this port is used as a device	I USB VBUS 5V	PD 100k	
USB0_OTG_ID USB3_OTG_ID	P64 S104	USB OTG ID input, active high	I 3.3V	PU 100k	
USB2SSRX+ USB2SSRX-	S74 S75	Receive signal differential pairs for SuperSpeed USB data coupling caps for RX pairs are off-module	I USB SS		
USB2SSTX+ USB2SSTX-	S71 S72	Transmit signal differential pairs for SuperSpeed USB data coupling caps for TX pairs are on-module	O USB SS		
USB3SSRX+ USB3SSRX-	S65 S66	Receive signal differential pairs for SuperSpeed USB data coupling caps for RX pairs are off-module	I USB SS		
USB3SSTX+ USB3SSTX-	S62 S63	Transmit signal differential pairs for SuperSpeed USB data coupling caps for TX pairs are on-module	O USB SS		

The conga-SA7 does not support USB OTG.

Table 26 PCIe Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
PCIE_A_TX+ PCIE_A_TX-	P89 P90	Differential PCIe link A transmit data pair	O LVDS PCle		AC coupled with 220nF on module
PCIE_B_TX+ PCIE_B_TX-	S90 S91	Differential PCIe link B transmit data pair	O LVDS PCle		AC coupled with 220nF on module
PCIE_C_TX+ PCIE_C_TX-	S81 S82	Differential PCIe link C transmit data pair	O LVDS PCIe		AC coupled with 220nF on module
PCIE_D_TX+ PCIE_D_TX-	S29 S30	Differential PCIe link D transmit data pair	O LVDS PCIe		AC coupled with 220nF on module
PCIE_A_RX+ PCIE_A_RX-	P86 P87	Differential PCIe link A receive data pair	I LVDS PCIe		
PCIE_B_RX+ PCIE_B_RX-	S87 S88	Differential PCIe link B receive data pair	I LVDS PCIe		
PCIE_C_RX+ PCIE_C_RX-	S78 S79	Differential PCIe link C receive data pair	I LVDS PCIe		
PCIE_D_RX+ PCIE_D_RX-	S32 S33	Differential PCIe link D receive data pair	I LVDS PCIe		
PCIE_A_REFCK+ PCIE_A_REFCK-	P83 P84	Differential PCIe Link reference clock output DC coupled	O LVDS PCle		

PCIE_B_REFCK+ PCIE_B_REFCK-	S84 S85	Differential PCIe Link reference clock output DC coupled	O LVDS PCle		
PCIE_C_REFCK+ PCIE_C_REFCK-	P80 P81	Differential PCIe Link reference clock output DC coupled	O LVDS PCIe		
PCIE_A_RST#	P75	PCIe port reset output	O 3.3V		
PCIE_B_RST#	S76	PCIe port reset output	O 3.3V		
PCIE_C_RST#	S77	PCIe port reset output	O 3.3V		
PCIE_WAKE#	S146	PCIe wake up interrupt to host common to PCIe links A, B, C, D	I OD 3.3V	PU 10k	

Table 27 SERDES Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
SERDES_1_TX+ SERDES_1_TX-	S81 S82	Differential SERDES 1 Transmit Data Pair	O PCIE		Not supported
SERDES_1_RX+ SERDES_1_RX-	S78 S79	Differential SERDES 1 Receive Data Pair	I PCIE		
SERDES_0_TX+ SERDES_0_TX-	S29 S30	Differential SERDES 0 Transmit Data Pair	O PCIE		
SERDES_0_RX+ SERDES_0_RX-	S32 S33	Differential SERDES 0 Receive Data Pair	I PCIE		
MDIO_CLK	S45	MDIO Signals to Configure Possible PHYs	O 1.8V		
MDIO_DAT	S46	MDIO Signals to Configure Possible PHYs	I/O OD 1.8V		

The conga-SA7 does not support SERDES.

Table 28 SATA Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
SATA_TX+ SATA_TX-	P48 P49	SATA 0 transmit differential data pair	O SATA		Supports SATA specification, Revision 3.0
SATA_RX+ SATA_RX-	P51 P52	SATA 0 receive differential data pair	I SATA		Supports SATA specification, Revision 3.0
SATA_ACT#	S54	Active low SATA activity indicator	O OD 3.3V		Up to 24 mA LED current

Table 29 Gigabit Ethernet Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
GBE0_MDI0+ GBE0_MDI0-	P30 P29	Bidirectional transmit/receive pair 0 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE1_MDI0+ GBE1_MDI0-	S17 S18	Bidirectional transmit/receive pair 0 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE0_MDI1+ GBE0_MDI1-	P27 P26	Bidirectional transmit/receive pair 1 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE1_MDI1+ GBE1_MDI1-	S20 S21	Bidirectional transmit/receive pair 1 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE0_MDI2+ GBE0_MDI2-	P24 P23	Bidirectional transmit/receive pair 2 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE1_MDI2+ GBE1_MDI2-	S23 S24	Bidirectional transmit/receive pair 2 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE0_MDI3+ GBE0_MDI3-	P20 P19	Bidirectional transmit/receive pair 3 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE1_MDI3+ GBE1_MDI3-	S26 S27	Bidirectional transmit/receive pair 3 to magnetics (Media Dependent Interface)	I/O GBE MDI		
GBE0_LINK100# GBE1_LINK100#	P21 S19	Link speed indication LED for 100 Mb/s	O OD 3.3V		Up to 24 mA LED current
GBE0_LINK1000# GBE1_LINK1000#	P22 S22	Link speed indication LED for 1000 Mb/s	O OD 3.3V		Up to 24 mA LED current
GBE0_LINK_ACT# GBE1_LINK_ACT#	P25 S31	Link or activity indication LED. Driven low on link (10, 100 or 1000 Mb/s). Blinks on activity	O OD 3.3V		Up to 24 mA LED current
GBE0_CTREF GBE1_CTREF	P28 S28	Center-Tap reference voltage for carrier board Ethernet magnetic (if required by the module GBE PHY)	0		Not connected
GBE0_SDP GBE1_SDP	P6 P5	IEEE 1588 trigger signal. For hardware implementation of PTP (precision time protocol). This is typically implemented by the software-defined pins from the Ethernet controller. The SDP pins can be used for IEEE1588 auxiliary device connections and for other miscellaneous hardware or software-control purposes	I/O 3.3V		Signals are provided by Intel Elkhart Lake SoC

Table 30 Watchdog Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment	
WDT_TIME_OUT#	S145	Watchdog timer output	O 1.8V	PD 100k	Driven only during runtime	

Table 31 GPIO Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
GPIO0	P108	Bidirectional general purpose input/output	I/O 1.8V		Controlled by the cBC.
GPIO1	P109	Bidirectional general purpose input/output	I/O 1.8V		Default BIOS setting: General purpose output
GPIO2	P110	Bidirectional general purpose input/output	I/O 1.8V		
GPIO3	P111	Bidirectional general purpose input/output	I/O 1.8V		
GPIO4 / HDA_RST#	P112	Bidirectional general purpose input/output Alternate use: HD audio reset HDA_RST# (active low output)	I/O 1.8V		Controlled by the cBC. Default BIOS setting: HD audio reset
GPIO5 / PWM_OUT	P113	Bidirectional general purpose input/output Alternate use: Pulse Width Modulation output PWM_OUT	I/O 1.8V		Controlled by the cBC. Default BIOS setting: Pulse Width Modulation output
GPIO6 / TACHIN	P114	Bidirectional general purpose input/output Alternate use: Tachometer input TACHIN	I/O 1.8V		Controlled by the cBC. Default BIOS setting: Tachometer input
GPIO7	P115	Bidirectional general purpose input/output	I/O 1.8V		Non-multiplexed GPIOs controlled by the cBC.
GPIO8	P116	Bidirectional general purpose input/output	I/O 1.8V		Default BIOS setting: General purpose input
GPIO9	P117	Bidirectional general purpose input/output	I/O 1.8V		
GPIO10	P118	Bidirectional general purpose input/output	I/O 1.8V		
GPIO11	P119	Bidirectional general purpose input/output	I/O 1.8V		
GPIO12	S142	Bidirectional general purpose input/output	I/O 1.8V		
GPIO13	S123	Bidirectional general purpose input/output	I/O 1.8V		

Pins P112-P114 support alternate use by default. For GPIO functionality, change the default configuration in the BIOS menu under Advanced -> GPIO Configuration submenu.

Table 32 Management Pins Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
VIN_PWR_BAD#	S150	Power bad indication from carrier board. Module and carrier power supplies (other than module and carrier power supervisory circuits) will not be enabled while this signal is held low by the carrier. Pulled up on module. Driven by OD part on carrier	I VDD_IN	PU 10k	
Carrier_pwr_ On	S154	Carrier board circuits (apart from power management and power path circuits) should not be powered up until the module asserts the CARRIER_PWR_ON signal.	O 1.8V	PD 100k	
CARRIER_STBY#	S153	The module shall drive this signal low when the system is in a standby power state	O 1.8V	PD 100k	Connected to SUS_S3#
RESET_OUT#	P126	General purpose reset output to carrier board	O 1.8V	PD 100k	
RESET_IN#	P127	Reset input from carrier board. Carrier drives low to force a module reset, floats the line otherwise. Pulled up on module. Driven by OD part on carrier	I OD 3.3V	PU 10k	
POWER_BTN#	P128	Power-button input from carrier board. Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the module. Pulled-up on module. Driven by OD part on carrier	I OD 3.3V	PU 10k	
SLEEP#	S149	Sleep indicator from carrier board. May be sourced from user Sleep button or carrier logic. Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the module. Pulled-up on module. Driven by OD part on carrier	I OD 3.3V	PU 10k	
LID#	S148	Lid open/close indication to module. Low indicates lid closure (which system may use to initiate a sleep state). Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the module. Pulled-up on module. Driven by OD part on carrier	I OD 3.3V	PU 10k	
BATLOW#	S156	Battery low indication to module. Carrier to float the line in in-active state. Pulled up on module. Driven by OD part on carrier	I OD 1.8V	PU 10k	
I2C_PM_DAT I2C_PM_CK	P122 P121	Power management I2C bus data and clock. On x86 systems these serve as SMB data and clock	I/O OD 1.8V	PU 2k2	
CHARGING#	S151	Held low by carrier during battery charging. Carrier to float the line when charge is complete. Pulled-up on module. Driven by OD part on carrier	I OD 3.3V	PU 10k 3.3V	
CHARGER_ PRSNT#	S152	Held low by carrier if DC input for battery charger is present. Pulled up on module. Driven by OD part on carrier	I OD 3.3V	PU 10k 3.3V	
TEST#	S157	Held low by carrier to invoke module vendor specific test function(s). Pulled up on module. Driven by OD part on carrier	I OD 3.3V	PU 100k 3.3V	
SMB_ALERT_1V8#	P1	SM Bus Alert# (interrupt) signal	I OD 1.8V	PU 2k2	

Table 33 Boot Select Signal Description

Signal Name	Pin	Description	I/O	PU/PD	Comment
BOOT_SEL0# BOOT_SEL1# BOOT_SEL2#	P123 P124 P125	Input straps determine the module boot device. Pulled up on module. Driven by OD part on carrier	I 1.8V	PU 10k	
FORCE_RECOV#	S155	Low on this pin allows non-protected segments of module boot device to be rewritten or restored from an external USB Host on module USB0. The module USB0 operates in Client Mode when the Force Recovery function is invoked. Pulled high on the module. For SoCs that do not implement a USB based Force Recovery functions, then a low on the module FORCE_RECOV# pin may invoke the SOC native Force Recovery mode – such as over a Serial Port. For x86 systems this signal may be used to load BIOS defaults. Pulled up on module. Driven by OD part on carrier	I 1.8V	PU 10k	Not supported

Table 33.1 Boot Source Description

Carrier Connection			Boot Source
BOOT_SEL2#	BOOT_SEL1#	BOOT_SEL0#	
GND	GND	GND	Carrier SATA
GND	GND	Float	Carrier SD Card
GND	Float	GND	Carrier eSPI (CS0#)
GND	Float	Float	Carrier SPI (CS0#)
Float	GND	GND	Module device (NAND, NOR) - vendor specific
Float	GND	Float	Remote boot (GbE, serial) - vendor specific
Float	Float	GND	Module eMMC flash
Float	Float	Float	Module SPI

- 1. The conga-SA7 supports only Carrier SPI boot source (GND, Float, Float) configuration.
- 2. For other boot source configurations, the conga-SA7 will boot from on-module SPI flash.

Table 33.2 Boot Strap Signal Description

Signal	Pin #	Description of Boot Strap Signal	I/O	PU/PD	Comment
SPI0_DO	P46	SPIO master data output (SPI serial output data from SMARC® module to the SPI device	O 1.8V	PU 20k	
HDA_SDO / I2S2_SDOUT	S51	HD audio serial data output to codec	O 1.8V	PD(i) 20k	
12S0_CK	S42	Digital audio clock	I/O 1.8V	PD(i) 20k	Not supported
I2S0_LRCK	S39	Left and right audio synchronization clock	I/O 1.8V	PD(i) 20k	Not supported

Caution

- 1. The signals listed in the table above are used as chipset configuration straps during system reset. In this condition (during reset), they are inputs that are pulled to the correct state by either SMARC internally implemented resistors or chipset internally implemented resistors that are located on the module.
- 2. No external DC loads or external pull-up or pull-down resistors should change the configuration of the signals listed in the above table.
- 3. External resistors may override the internal strap states and cause the SMARC module to malfunction and/or cause irreparable damage to the module.

Table 34 Power and GND Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
VDD_IN	P147, P148, P149, P150, P151, P152, P153, P154, P155, P156	Module power input voltage—4.75V min. to 5.25V max.	Р		
GND	P2, P9, P12, P15, P18, P32, P38, P47, P50, P53, P59, P68, P79, P82, P85, P88, P91, P94, P97, P100, P103, P120, P133, P142 S3, S10, S16, S25, S34, S47, S61, S64, S67, S70, S73, S80, S83, S86, S89, S92, S101, S110, S119, S124, S130, S136, S143, S158	Power Ground	P		
VDD_RTC	S147	Low current RTC circuit backup power—3.0V nominal. May be sourced from a carrier based lithium cell or super cap. This option requires a customized variant.	Р		BOM option for sourcing

External 3.3 V is required for RTC battery implementation with supercap. Default conga-SA7 configuration does not support supercap charging. The supercap charging is only possible with a BOM option.

9 System Resources

9.1 I/O Address Assignment

The I/O address assignment of the conga-SA7 module is functionally identical with a standard PC/AT. The table below shows the most important addresses and the addresses that differ from the standard PC/AT configuration.

These Fixed address ranges are either positively decoded in the System Agent or subtractively routed to the Primary to Sideband Bridge (P2SB). The P2SB will claim many of the fixed I/O accesses and forward those transactions over sideband fabric to their functional target. Address ranges that are not listed or marked Reserved are NOT positively decoded by the PCH (unless assigned to one of the variable ranges) and will be internally terminated by the PCH.

On the conga-SA7 the Platform P2SB acts as the subtractive decoding agent. I/O Fix Addresses positively decoded by system Agents are listed on the following table.

Table 35 I/O Address Assignment

I/O Address (hex)	Description			
Interrupt Controller	20h-21h, 24h-25h, 28h-29h, 2Ch-2Dh, 30h-31h, 34h-35h, 38h-39h, 3Ch-3Dh, A0h- A1h, A4h-A5h, A8h-A9h, ACh-ADh, B0h-B1h, B4h-B5h, B8h-B9h, Bch-BDh, 4D0h-4D1h			
8254 Timers	40h-43h, 50h-53h			
NMI Controller (CPU I/F)	61h, 63h, 65h, 67h			
Reset Generator (CPU I/F)	92h			
RTC	70h-77h			
Reset Generator (CPU)	CF9h			
PMC	B2h-B3h			
eSPI	2Eh-2F, 4Eh-4Fh, 60h, 62h, 64h, 66h, 80h, 84h-86h, 8Ch-8Eh, 90h, 94h-96h, 98h, 9Ch-9Eh, 200-207h, 208-20Fh			

9.2 PCI Configuration Space Map

00h	00h	1		
001		00h	0x452E	Host Bridge
00h	02h	00h	0x4571	Graphics and Display
00h	12h	00h	0x4B37	Intel® Serial I/O: SPI Controller #2
00h	14h	00h	0x4B7D	USB eXtensible Host Controller Interface (xHCI)
00h	14h	01h	0x4B7E	USB eXtensible Device Controller Interface (xDCI) ²
00h	14h	02h	0x4B7F	Memory Controller
00h	16h	00h	0x4B70	Intel® Converged Security Engine (Intel® CSE)
00h	17h	00h	0x4B63	SATA Controller (AHCI)
00h	18h	00h	0x4BC0	Intel® Programmable Services Engine (Intel® PSE): I2C Controller #7
00h	18h	01h	0x4BC1	Intel® PSE: CAN Controller #0 ²
00h	18h	02h	0x4BC2	Intel® PSE: CAN Controller #1 ²
00h	1Ah	00h	0x4B47	embedded Multi Media Card (eMMC) Controller
00h	1Ah	01h	0x4B48	Secure Digital (SD) & Secure Digital I/O Controller
00h	1Bh	00h	0x4BB9	Intel® PSE: Inter-Integrated Circuit (I2C) Controller #0
00h	1Ch	00h	0x4B38	PCIe* Root Port #0 (PCIe 0, Single VC) 1
00h	1Ch	01h	0x4B39	PCIe* Root Port #1 (PCIe 0, Single VC) ¹
00h	1Ch	02h	0x4B3A	PCIe* Root Port #2 (PCIe 0, Single VC) 1
00h	1Ch	03h	0x4B3B	PCIe* Root Port #3 (PCIe 0, Single VC) 1
00h	1Ch	04h	0x4B3C	PCIe* Root Port #4 (PCIe 1, Multi VC) 1
00h	1Ch	05h	0x4B3D	PCIe* Root Port #5 (PCIe 2, Multi VC) ¹
00h	1Ch	06h	0x4B3E	PCIe* Root Port #6 (PCIe 3, Multi VC) 1
00h	1Dh	00h	0x4BB3	Intel® Programmable Services Engine (Intel® PSE): Local Host to PSE (LH2OSE) IPC
00h	1Dh	01h	0x4BA0	Intel® PSE: Gigabit Ethernet Time Sensitive Networking (TSN) Controller #0 (RGMII: 1Gb Mode)
00h	1Dh	02h	0x4BB0	Intel® PSE: Gigabit Ethernet Time Sensitive Networking (TSN) Controller #1 (RGMII: 1Gb Mode)
00h	1Eh	00h	0x4B28	Intel® Serial I/O: UART Controller #0 ²
00h	1Eh	01h	0x4B28	Intel Serial I/O: UART Controller #1
00h	1Fh	00h	0x4B00	Enhanced Serial Peripheral Interface (eSPI) Controller
00h	1Fh	01h	0x4B20	Primary to Sideband Bridge (P2SB)
00h	1Fh	02h	0x4B21	Power Management Controller (PMC)

00h	1Fh	04h	0x4B23	System Management Bus (SMBus) Controller
00h	1Fh	05h	0x4B24	Serial Peripheral Interface (SPI) Controller for Flash & TPM
00h	1Fh	07h	0x4B26	Intel® Trace Hub

- ^{1.} To view these ports, attach a device to the corresponding PCI Express port or set the PCI Express port in the BIOS setup menu to "Enabled".
- ^{2.} Disabled by default in the BIOS Setup menu.

9.3 I²C Bus and SMBus

System Management (SM) bus signals are connected to the Intel® chipset. The SM bus is not intended to be used by off-board non-system management devices. For more information about this subject, contact congatec technical support.

Table 36 Bus Accessibility

Bus Type	Address	Device	Comment
Primary I2C	0x34	I2S Codec	Only visible if it is present on conga-SEVAL carrier board
Primary I2C	0xA0, 0xA2, 0xA4, 0xA6, 0xA8, 0xAA, 0xAC, 0xAE	EEPROM	Only visible if EEPROM is present on U40 of conga-SEVAL carrier board
Primary I2C	0xE2	Post Code Display	Only visible if Post Code is enabled on the conga-SEVAL carrier board
Primary SMBUS	0x4E	TPS65981	TPS65981 USB Type-C / PD controller U3 on conga-SEVAL carrier board
Primary SMBUS	0xAE	PM I2C EEPROM	Only visible if EEPROM is present on U42 of conga-SEVAL carrier board
Primary SMBUS	0xD6	ICS9DBV0431	Only visible in conga-SEVAL due to ICS9DBV0431 PCIe clock buffer U8
Primary SMBUS	0xF8, 0xFA, 0xFC, 0xFE	Reserved	Reserved addresses for future purposes according to SMBus Spec
Secondary SMBUS	0xBC	SN56DP159	SN56DP159 TMDS to HDMI level shifter re-timer
Secondary SMBUS	0xC0	LVDS Converter	Only Visible if LVDS Interface is enabled
Virtual I2C	0x80, 0x90, 0xA0, 0xB0, 0xC0, 0xD0, 0xE0	Intern BC Virtual Devices	
EPI	0xA0-0xAE	EEPROM	Only Visible if an EEPROM is present on U28 of conga-SEVAL

Address 16h is reserved for congatec Battery Management solutions.

10 BIOS Setup Description

10.1 Navigating the BIOS Setup Menu

The BIOS setup menu shows the features and options supported in the congatec BIOS. To access and navigate the BIOS setup menu, press the or <F2> key during POST. The right frame displays the key legend. Above the key legend is an area reserved for text messages. These text messages explain the options and the possible impacts when changing the selected option in the left frame.

10.2 BIOS Versions

The BIOS displays the BIOS project name and the revision code during POST, and on the main setup screen. The initial production BIOS for conga-SA7 is identified as SA70R1xx, where:

- R is the identifier for a BIOS ROM file,
- 1 is the so called feature number and
- xx is the major and minor revision number.

The SA70 binary size is 32 MB.

10.3 Updating the BIOS

BIOS updates are recommended to correct platform issues or enhance the feature set of the module. The conga-SA7 features a congatec/AMI AptioEFI firmware on an onboard flash ROM chip. You can update the firmware with the congatec System Utility. The utility has five versions—UEFI shell, DOS based command line¹, Win32 command line, Win32 GUI, and Linux version.

For more information about "Updating the BIOS" refer to the user's guide for the congatec System Utility "CGUTLm1x.pdf" on the congatec website at www.congatec.com.

1. Deprecated

10.3.1 Update from External Flash

For instructions on how to update the BIOS from external flash, refer to the AN7_External_BIOS_Update.pdf application note on the congatec website at http://www.congatec.com.

10.4 Supported Flash Devices

The conga-SA7 supports the following flash devices:

W25R256JWXIQ

The flash device listed above can be used on the carrier board to support external BIOS.

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC ELEKTRONIK AG

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering Phone: E-Mail: Internet: +49 89 894450-0 info@fortecag.de www.fortecag.de

Fortec Group Members

Austria

ODISTEC

Distec GmbH, Office Vienna Nuschinggasse 12

1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 info@distec.de www.distec.de

Germany

ODISTECA FORTEC GROUP MEMBER

Distec GmbHAugsburger Str. 2b
82110 Germering

Phone: E-Mail: Internet:

+49 89 894363-0 info@distec.de www.distec.de

Switzerland

ALTRAC

A FORTEC GROUP MEMBER

ALTRAC AG
Bahnhofstraße 3
5436 Würenlos

Phone: E-Mail: Internet:

+41 44 7446111 info@altrac.ch www.altrac.ch

United Kingdom

DISPLAY TECHNOLOGY

Display Technology Ltd.
Osprey House, 1 Osprey Court
Hichingbrooke Business Park
Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600 E-Mail: <u>info@displaytechno</u>

info@displaytechnology.co.uk www. displaytechnology.co.uk

USA

APOLLO DISPLAY
TECHNOLOGIES
A FORTEC GROUP MEMBER

Apollo Display Technologies, Corp. 87 Raynor Avenue,

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779 Phone: E-Mail: Internet:

Internet:

+1 631 5804360 info@apollodisplays.com www.apollodisplays.com